私はAVXがSSEより約1.5倍速くなると予想していました。 Intel Core CPU(Broadwell)では、3つのアレイ(3つのアレイ* 16384要素* 4バイト/要素= 196608バイト)がL2キャッシュ(256KB)に収まる必要があります。AVX vs. SSE:より高速なスピードアップを期待する
使用するはずの特別なコンパイラ指令またはフラグはありますか?
コンパイラバージョン
$ clang --version
Apple LLVM version 9.0.0 (clang-900.0.38)
Target: x86_64-apple-darwin16.7.0
Thread model: posix
InstalledDir: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin
コンパイルライン
$ make avx
clang -O3 -fno-tree-vectorize -msse -msse2 -msse3 -msse4.1 -mavx -mavx2 avx.c ; ./a.out 123
n: 123
AVX Time taken: 0 seconds 177 milliseconds
vector+vector:begin int: 1 5 127 0
SSE Time taken: 0 seconds 195 milliseconds
vector+vector:begin int: 1 5 127 0
avx.c
#include <stdio.h>
#include <stdlib.h>
#include <x86intrin.h>
#include <time.h>
#ifndef __cplusplus
#include <stdalign.h> // C11 defines _Alignas(). This header defines alignas()
#endif
#define REPS 50000
#define AR 16384
// add int vectors via AVX
__attribute__((noinline))
void add_iv_avx(__m256i *restrict a, __m256i *restrict b, __m256i *restrict out, int N) {
__m256i *x = __builtin_assume_aligned(a, 32);
__m256i *y = __builtin_assume_aligned(b, 32);
__m256i *z = __builtin_assume_aligned(out, 32);
const int loops = N/8; // 8 is number of int32 in __m256i
for(int i=0; i < loops; i++) {
_mm256_store_si256(&z[i], _mm256_add_epi32(x[i], y[i]));
}
}
// add int vectors via SSE; https://en.wikipedia.org/wiki/Restrict
__attribute__((noinline))
void add_iv_sse(__m128i *restrict a, __m128i *restrict b, __m128i *restrict out, int N) {
__m128i *x = __builtin_assume_aligned(a, 16);
__m128i *y = __builtin_assume_aligned(b, 16);
__m128i *z = __builtin_assume_aligned(out, 16);
const int loops = N/sizeof(int);
for(int i=0; i < loops; i++) {
//out[i]= _mm_add_epi32(a[i], b[i]); // this also works
_mm_storeu_si128(&z[i], _mm_add_epi32(x[i], y[i]));
}
}
// printing
void p128_as_int(__m128i in) {
alignas(16) uint32_t v[4];
_mm_store_si128((__m128i*)v, in);
printf("int: %i %i %i %i\n", v[0], v[1], v[2], v[3]);
}
__attribute__((noinline))
void debug_print(int *h) {
printf("vector+vector:begin ");
p128_as_int(* (__m128i*) &h[0]);
}
int main(int argc, char *argv[]) {
int n = atoi (argv[1]);
printf("n: %d\n", n);
int *x,*y,*z;
if (posix_memalign((void**)&x, 32, 16384*sizeof(int))) { free(x); return EXIT_FAILURE; }
if (posix_memalign((void**)&y, 32, 16384*sizeof(int))) { free(y); return EXIT_FAILURE; }
if (posix_memalign((void**)&z, 32, 16384*sizeof(int))) { free(z); return EXIT_FAILURE; }
x[0]=0; x[1]=2; x[2]=4;
y[0]=1; y[1]=3; y[2]=n;
// touch each 4K page in x,y,z to avoid copy-on-write optimizations
for (int i=512; i<AR; i+= 512) { x[i]=1; y[i]=1; z[i]=1; }
// warmup
for(int i=0; i<REPS; ++i) { add_iv_avx((__m256i*)x, (__m256i*)y, (__m256i*)z, AR); }
// AVX
clock_t start = clock();
for(int i=0; i<REPS; ++i) { add_iv_avx((__m256i*)x, (__m256i*)y, (__m256i*)z, AR); }
int msec = (clock()-start) * 1000/CLOCKS_PER_SEC;
printf(" AVX Time taken: %d seconds %d milliseconds\n", msec/1000, msec%1000);
debug_print(z);
// warmup
for(int i=0; i<REPS; ++i) { add_iv_sse((__m128i*)x, (__m128i*)y, (__m128i*)z, AR); }
// SSE
start = clock();
for(int i=0; i<REPS; ++i) { add_iv_sse((__m128i*)x, (__m128i*)y, (__m128i*)z, AR); }
msec = (clock()-start) * 1000/CLOCKS_PER_SEC;
printf("\n SSE Time taken: %d seconds %d milliseconds\n", msec/1000, msec%1000);
debug_print(z);
return EXIT_SUCCESS;
}
ループで数回繰り返し、SSEとAVXの間で順序を入れ替えます。最後に、あなたはあなたが期待している1.5にかなり近い比率をSkylakeで取得します。 –
要素ごとの計算量が少ない(ちょうど追加のために)、私は実行時間が主にメモリに束縛されていると思います。 – EOF
あなたはBroadwellにいるので、SkylakeのハードウェアのP-state機能はなく、最大のターボまで高速で立ち上げることができます。 36msは、(コアクロックサイクルではなく)ウォールクロック時間を測定するのに非常に短い。また、AVXのウォームアップ期間は約14時間です。ここで256b命令はおそらく4倍遅くなります:http://www.agner.org/optimize/blog/read.php?i=415。 AgnerはSkylakeの前でそれを観察しなかったと言いますが、他の人は持っています。とにかく、最初にウォーミングアップして制御しない限り、最初にSSEを実行すると、低クロック速度で時間がかかることがあります。 –