2017-05-11 9 views
0

私はgensimでCountVectorizer()のn_gramパラメータを模倣しようとしています。私の目標は、ScikitまたはGensimでLDAを使用し、非常に類似したバイグラムを見つけることができるようにすることです。例えばgensimでScikit ngramを模倣しようとしています

、我々はscikitと、次のバイグラムを見つけることができます:「ABCコンピュータ」、「バイナリー順不同」とgensimで「調査」、「グラフ未成年者」...

私は以下の私のコードを添付していますGensimとScikitをバイグラム/ユニグラムの観点から比較する。私たちは48個のユニークなトークンを見つけるgensimモデルでは、あなたの助け

documents = [["Human" ,"machine" ,"interface" ,"for" ,"lab", "abc" ,"computer" ,"applications"], 
     ["A", "survey", "of", "user", "opinion", "of", "computer", "system", "response", "time"], 
     ["The", "EPS", "user", "interface", "management", "system"], 
     ["System", "and", "human", "system", "engineering", "testing", "of", "EPS"], 
     ["Relation", "of", "user", "perceived", "response", "time", "to", "error", "measurement"], 
     ["The", "generation", "of", "random", "binary", "unordered", "trees"], 
     ["The", "intersection", "graph", "of", "paths", "in", "trees"], 
     ["Graph", "minors", "IV", "Widths", "of", "trees", "and", "well", "quasi", "ordering"], 
     ["Graph", "minors", "A", "survey"]] 

ため

おかげで、我々はユニグラム/印刷とバイグラム(dictionary.token2id)

# 1. Gensim 
from gensim.models import Phrases 

# Add bigrams and trigrams to docs (only ones that appear 20 times or more). 
bigram = Phrases(documents, min_count=1) 
for idx in range(len(documents)): 
    for token in bigram[documents[idx]]: 
     if '_' in token: 
      # Token is a bigram, add to document. 
      documents[idx].append(token) 

documents = [[doc.replace("_", " ") for doc in docs] for docs in documents] 
print(documents) 

dictionary = corpora.Dictionary(documents) 
print(dictionary.token2id) 

そしてscikitとを印刷することができます96個のユニークなトークンは、我々は印刷でscikitの語彙を印刷することができます(単語)

# 2. Scikit 
import re 
token_pattern = re.compile(r"\b\w\w+\b", re.U) 

def custom_tokenizer(s, min_term_length = 1): 
    """ 
    Tokenizer to split text based on any whitespace, keeping only terms of at least a certain length which start with an alphabetic character. 
    """ 
    return [x.lower() for x in token_pattern.findall(s) if (len(x) >= min_term_length and x[0].isalpha()) ] 

from sklearn.feature_extraction.text import CountVectorizer 

def preprocess(docs, min_df = 1, min_term_length = 1, ngram_range = (1,1), tokenizer=custom_tokenizer): 
    """ 
    Preprocess a list containing text documents stored as strings. 
    doc : list de string (pas tokenizé) 
    """ 
    # Build the Vector Space Model, apply TF-IDF and normalize lines to unit length all in one call 
    vec = CountVectorizer(lowercase=True, 
         strip_accents="unicode", 
         tokenizer=tokenizer, 
         min_df = min_df, 
         ngram_range = ngram_range, 
         stop_words = None 
        ) 
    X = vec.fit_transform(docs) 
    vocab = vec.get_feature_names() 

    return (X,vocab) 

docs_join = list() 

for i in documents: 
    docs_join.append(' '.join(i)) 

(X, vocab) = preprocess(docs_join, ngram_range = (1,2)) 

print(vocab) 

答えて

1

gensimPhrasesクラスは、「文章のストリームから共通のフレーズ(マルチワード式)を自動的に検出する」ように設計されています。 これは、「予想よりも頻繁に出現する」バイグラムしか提供しません。だからgensimパッケージでは、'response time''Graph minors''A survey'のようないくつかのバイグラムしか得られません。

bigram.vocabを見ると、これらのバイグラムは2回表示され、他のすべてのバイグラムは1回だけ表示されます。

scikit-learnのクラスはすべてのバイグラムを提供します。

関連する問題