私のプロジェクトでは、最初のレンダリングパスから色と奥行きの情報を取得し、2番目のレンダリングパスで他の目的のためにディスクリプタセットとして使用しようとしています。そうするために、私はvkDescriptorImageInfoオブジェクトとVkSamplerオブジェクトを作成して、その情報を保持するためにそれぞれ色と深度の添付ファイルを作成しました。しかし、カラーサンプラーとディスクリプタのイメージ情報はパイプラインで正常に作成されましたが、2番目のパスでは何も読み取ることができなかったため、深さ1はありませんでした。最初のレンダーパスの定義(opaqueObjectPass)とレンダーパスを作成する関数を含め、私のコードを以下に添付しました。Vulkanのディスクリプタまたはサンプラを作成できません
struct OpaqueObjectsPass
{
int32_t width, height;
VkFramebuffer frameBuffer;
FrameBufferAttachment color, depth;
VkRenderPass renderPass;
VkSampler ColorSampler, DepthSampler;
VkDescriptorImageInfo ColorDescriptor, DepthDescriptor;
VkCommandBuffer commandBuffer = VK_NULL_HANDLE;
VkSemaphore semaphore = VK_NULL_HANDLE;
} opaqueObjectPass;
void PrepareOpaqueRendering()
{
opaqueObjectPass.width = width;
opaqueObjectPass.height = height;
// find a suitable depth format
VkFormat fbDepthFormat;
VkBool32 validDepthFormat = vks::tools::getSupportedDepthFormat(physicalDevice, &fbDepthFormat);
// color attachment
VkImageCreateInfo l_Image = vks::initializers::imageCreateInfo();
l_Image.imageType = VK_IMAGE_TYPE_2D;
l_Image.format = FB_COLOR_FORMAT;
l_Image.extent.width = opaqueObjectPass.width;
l_Image.extent.height = opaqueObjectPass.height;
l_Image.extent.depth = 1;
l_Image.mipLevels = 1;
l_Image.arrayLayers = 1;
l_Image.samples = VK_SAMPLE_COUNT_1_BIT;
l_Image.tiling = VK_IMAGE_TILING_OPTIMAL;
// We will sample directly from the color attachment
l_Image.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
VkMemoryAllocateInfo l_MemAlloc = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements l_MemReqs;
VK_CHECK_RESULT(vkCreateImage(device, &l_Image, nullptr, &opaqueObjectPass.color.image));
vkGetImageMemoryRequirements(device, opaqueObjectPass.color.image, &l_MemReqs);
l_MemAlloc.allocationSize = l_MemReqs.size;
l_MemAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(l_MemReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &l_MemAlloc, nullptr, &opaqueObjectPass.color.mem));
VK_CHECK_RESULT(vkBindImageMemory(device, opaqueObjectPass.color.image, opaqueObjectPass.color.mem, 0));
VkImageViewCreateInfo l_ColorImageView = vks::initializers::imageViewCreateInfo();
l_ColorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D;
l_ColorImageView.format = FB_COLOR_FORMAT;
l_ColorImageView.subresourceRange = {};
l_ColorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
l_ColorImageView.subresourceRange.baseMipLevel = 0;
l_ColorImageView.subresourceRange.levelCount = 1;
l_ColorImageView.subresourceRange.baseArrayLayer = 0;
l_ColorImageView.subresourceRange.layerCount = 1;
l_ColorImageView.image = opaqueObjectPass.color.image;
VK_CHECK_RESULT(vkCreateImageView(device, &l_ColorImageView, nullptr, &opaqueObjectPass.color.view));
// Create sampler to sample from the attachment in the fragment shader
VkSamplerCreateInfo l_SamplerInfo = vks::initializers::samplerCreateInfo();
l_SamplerInfo.magFilter = VK_FILTER_LINEAR;
l_SamplerInfo.minFilter = VK_FILTER_LINEAR;
l_SamplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
l_SamplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
l_SamplerInfo.addressModeV = l_SamplerInfo.addressModeU;
l_SamplerInfo.addressModeW = l_SamplerInfo.addressModeU;
l_SamplerInfo.mipLodBias = 0.0f;
l_SamplerInfo.maxAnisotropy = 0;
l_SamplerInfo.minLod = 0.0f;
l_SamplerInfo.maxLod = 1.0f;
l_SamplerInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &l_SamplerInfo, nullptr, &opaqueObjectPass.ColorSampler));
// Depth stencil attachment
l_Image.format = fbDepthFormat;
l_Image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
//l_Image.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VK_CHECK_RESULT(vkCreateImage(device, &l_Image, nullptr, &opaqueObjectPass.depth.image));
vkGetImageMemoryRequirements(device, opaqueObjectPass.depth.image, &l_MemReqs);
l_MemAlloc.allocationSize = l_MemReqs.size;
l_MemAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(l_MemReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &l_MemAlloc, nullptr, &opaqueObjectPass.depth.mem));
VK_CHECK_RESULT(vkBindImageMemory(device, opaqueObjectPass.depth.image, opaqueObjectPass.depth.mem, 0));
VkImageViewCreateInfo l_DepthStencilView = vks::initializers::imageViewCreateInfo();
l_DepthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D;
l_DepthStencilView.format = fbDepthFormat;
l_DepthStencilView.flags = 0;
l_DepthStencilView.subresourceRange = {};
l_DepthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
l_DepthStencilView.subresourceRange.baseMipLevel = 0;
l_DepthStencilView.subresourceRange.levelCount = 1;
l_DepthStencilView.subresourceRange.baseArrayLayer = 0;
l_DepthStencilView.subresourceRange.layerCount = 1;
l_DepthStencilView.image = opaqueObjectPass.depth.image;
VK_CHECK_RESULT(vkCreateImageView(device, &l_DepthStencilView, nullptr, &opaqueObjectPass.depth.view));
// create a sampler of depth buffer
VK_CHECK_RESULT(vkCreateSampler(device, &l_SamplerInfo, nullptr, &opaqueObjectPass.DepthSampler));
// Create a separate render pass for the offscreen rendering as it may differ from the one used for scene rendering
std::array<VkAttachmentDescription, 2> l_AttchmentDescriptions = {};
// Color attachment
l_AttchmentDescriptions[0].format = FB_COLOR_FORMAT;
l_AttchmentDescriptions[0].samples = VK_SAMPLE_COUNT_1_BIT;
l_AttchmentDescriptions[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
l_AttchmentDescriptions[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
l_AttchmentDescriptions[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
l_AttchmentDescriptions[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
l_AttchmentDescriptions[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
l_AttchmentDescriptions[0].finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
// Depth attachment
l_AttchmentDescriptions[1].format = fbDepthFormat;
l_AttchmentDescriptions[1].samples = VK_SAMPLE_COUNT_1_BIT;
l_AttchmentDescriptions[1].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
l_AttchmentDescriptions[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE;
l_AttchmentDescriptions[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
l_AttchmentDescriptions[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
l_AttchmentDescriptions[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
l_AttchmentDescriptions[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkAttachmentReference l_ColorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL };
VkAttachmentReference l_DepthReference = { 1, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL };
VkSubpassDescription subpassDescription = {};
subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpassDescription.colorAttachmentCount = 1;
subpassDescription.pColorAttachments = &l_ColorReference;
subpassDescription.pDepthStencilAttachment = &l_DepthReference;
// Use subpass dependencies for layout transitions
std::array<VkSubpassDependency, 2> l_Dependencies;
l_Dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL;
l_Dependencies[0].dstSubpass = 0;
l_Dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
l_Dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
l_Dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT;
l_Dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
l_Dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
l_Dependencies[1].srcSubpass = 0;
l_Dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL;
l_Dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
l_Dependencies[1].dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
l_Dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
l_Dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
l_Dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
// Create the actual renderpass
VkRenderPassCreateInfo l_RenderPassInfo = {};
l_RenderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
l_RenderPassInfo.attachmentCount = static_cast<uint32_t>(l_AttchmentDescriptions.size());
l_RenderPassInfo.pAttachments = l_AttchmentDescriptions.data();
l_RenderPassInfo.subpassCount = 1;
l_RenderPassInfo.pSubpasses = &subpassDescription;
l_RenderPassInfo.dependencyCount = static_cast<uint32_t>(l_Dependencies.size());
l_RenderPassInfo.pDependencies = l_Dependencies.data();
VK_CHECK_RESULT(vkCreateRenderPass(device, &l_RenderPassInfo, nullptr, &opaqueObjectPass.renderPass));
VkImageView l_Attachments[2];
l_Attachments[0] = opaqueObjectPass.color.view;
l_Attachments[1] = opaqueObjectPass.depth.view;
VkFramebufferCreateInfo l_fbufCreateInfo = vks::initializers::framebufferCreateInfo();
l_fbufCreateInfo.renderPass = opaqueObjectPass.renderPass;
l_fbufCreateInfo.attachmentCount = 2;
l_fbufCreateInfo.pAttachments = l_Attachments;
l_fbufCreateInfo.width = opaqueObjectPass.width;
l_fbufCreateInfo.height = opaqueObjectPass.height;
l_fbufCreateInfo.layers = 1;
VK_CHECK_RESULT(vkCreateFramebuffer(device, &l_fbufCreateInfo, nullptr, &opaqueObjectPass.frameBuffer));
// Fill a descriptor for later use in a descriptor set
opaqueObjectPass.ColorDescriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
opaqueObjectPass.ColorDescriptor.imageView = opaqueObjectPass.color.view;
opaqueObjectPass.ColorDescriptor.sampler = opaqueObjectPass.ColorSampler;
opaqueObjectPass.DepthDescriptor.imageLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL;
opaqueObjectPass.DepthDescriptor.imageView = opaqueObjectPass.depth.view;
opaqueObjectPass.DepthDescriptor.sampler = opaqueObjectPass.DepthSampler;
}
void PrepareOpaquePipeline()
{
VkPipelineInputAssemblyStateCreateInfo l_InputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo l_RasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_FRONT_BIT, VK_FRONT_FACE_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState l_BlendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo l_ColorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(1, &l_BlendAttachmentState);
VkPipelineDepthStencilStateCreateInfo l_DepthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo l_ViewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo l_MultisampleState =
vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> l_DynamicStateEnables = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR};
VkPipelineDynamicStateCreateInfo l_DynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(l_DynamicStateEnables.data(), l_DynamicStateEnables.size(), 0);
// Solid rendering pipeline
// Load shaders
std::array<VkPipelineShaderStageCreateInfo, 2> l_ShaderStages;
l_ShaderStages[0] = loadShader(getAssetPath() + "shaders/offscreen/opaque.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
l_ShaderStages[1] = loadShader(getAssetPath() + "shaders/offscreen/opaque.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo l_PipelineCreateInfo =
vks::initializers::pipelineCreateInfo(pipelineLayouts.opaque, opaqueObjectPass.renderPass, 0);
l_PipelineCreateInfo.pVertexInputState = &vertices.inputState;
l_PipelineCreateInfo.pInputAssemblyState = &l_InputAssemblyState;
l_PipelineCreateInfo.pRasterizationState = &l_RasterizationState;
l_PipelineCreateInfo.pColorBlendState = &l_ColorBlendState;
l_PipelineCreateInfo.pMultisampleState = &l_MultisampleState;
l_PipelineCreateInfo.pViewportState = &l_ViewportState;
l_PipelineCreateInfo.pDepthStencilState = &l_DepthStencilState;
l_PipelineCreateInfo.pDynamicState = &l_DynamicState;
l_PipelineCreateInfo.stageCount = l_ShaderStages.size();
l_PipelineCreateInfo.pStages = l_ShaderStages.data();
// create graphics pipeline of opaque
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &l_PipelineCreateInfo, nullptr, &pipelines.opaque));
}
は、おそらく私が不適切なプロパティフラグのカップルを設定すると、私は正しいプロパティ設定のための任意の提案を高く評価し、二レンダーパスで作業記述子セットを作成します。
読み込みしようとしている画像のレイアウトをどこで変更するかわかりません。 –
カラーイメージのレイアウトはVK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMALで、深度イメージはVK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMALに設定されています。それらは関数PrepareOpaqueRendering()の終わりにあります。しかし、これらのイメージレイアウトの変更について質問しているかどうかはわかりません。ありがとう。 –
私はあなたが記述子としてそれらを使用するとき、イメージがそれらのレイアウトにあると宣言しているのを見ます。しかし、私はあなたが実際にそれらのレイアウトに*置いた場所を見ません。最終的なレンダーパスレイアウトは、奥行きの添付ファイルを 'DEPTH_STENCIL_ATTACHMENT_OPTIMAL'に置きます。 –