1
私はKNNマシン学習モデルを実装しようとしていますが、gpuデバイスを使用してコードを実行することはできません。 私のデータベースが形状[1500,2,1000,6]の4Dのnumpy配列であり、実行を完了するのに多くの時間がかかるので、CPUデバイスでも実行できません。 CUDAとCuDNNはすでにインストールされています。テンソルフローでgpuを使用しようとするとエラーが発生する
私のコードは次のとおりです。
# Placeholders
with tf.device('/gpu:0'):
x_data_train = tf.placeholder(shape=[1500,2,1000, 6], dtype=tf.float32)
x_data_test = tf.placeholder(shape=[1500,2,1000, 6], dtype=tf.float32)
y_target_train = tf.placeholder(shape=[1500,1], dtype=tf.float32)
y_target_test = tf.placeholder(shape=[1500,1], dtype=tf.float32)
# Declare distance metric
# L1
distance = tf.reduce_sum(tf.abs(tf.subtract(x_data_train, tf.expand_dims(x_data_test,1))), axis=2)
# L2
#distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(x_data_train, tf.expand_dims(x_data_test,1))), reduction_indices=1))
# Predict: Get min distance index (Nearest neighbor)
top_k_xvals, top_k_indices = tf.nn.top_k(tf.negative(distance), k=k)
prediction_indices = tf.gather(y_target_train, top_k_indices)
# Predict the mode category
count_of_predictions = tf.reduce_sum(prediction_indices, axis=1)
prediction = tf.argmax(count_of_predictions, axis=1)
# Calculate how many loops over training data
num_loops = int(np.ceil(len(x_vals_test)/batch_size))
test_output = []
actual_vals = []
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)):
for i in range(num_loops):
min_index = i*batch_size
max_index = min((i+1)*batch_size,len(x_vals_train))
x_batch = x_vals_test[min_index:max_index]
y_batch = y_vals_test[min_index:max_index]
predictions = sess.run(prediction, feed_dict={x_data_train: x_vals_train, x_data_test: x_batch,
y_target_train: y_vals_train, y_target_test: y_batch})
test_output.extend(predictions)
actual_vals.extend(np.argmax(y_batch, axis=1))
accuracy = sum([1./test_size for i in range(test_size) if test_output[i]==actual_vals[i]])
print('Accuracy on test set: ' + str(accuracy))
エラーは次のとおりです。
Device mapping: no known devices.
Traceback (most recent call last):
line 111, in <module>
y_target_train: y_vals_train, y_target_test: y_batch})
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 789, in run
run_metadata_ptr)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 997, in _run
feed_dict_string, options, run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1132, in _do_run
target_list, options, run_metadata)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1152, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Cannot assign a device for operation 'Placeholder_3': Operation was explicitly assigned to /device:GPU:0 but available devices are [ /job:localhost/replica:0/task:0/cpu:0 ]. Make sure the device specification refers to a valid device.
[[Node: Placeholder_3 = Placeholder[dtype=DT_FLOAT, shape=[1500,1], _device="/device:GPU:0"]()]]
Caused by op u'Placeholder_3', defined at:
line 83, in <module>
y_target_test = tf.placeholder(shape=[1500,1], dtype=tf.float32)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/array_ops.py", line 1530, in placeholder
return gen_array_ops._placeholder(dtype=dtype, shape=shape, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_array_ops.py", line 1954, in _placeholder
name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 767, in apply_op
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2506, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1269, in __init__
self._traceback = _extract_stack()
InvalidArgumentError (see above for traceback): Cannot assign a device for operation 'Placeholder_3': Operation was explicitly assigned to /device:GPU:0 but available devices are [ /job:localhost/replica:0/task:0/cpu:0 ]. Make sure the device specification refers to a valid device.
[[Node: Placeholder_3 = Placeholder[dtype=DT_FLOAT, shape=[1500,1], _device="/device:GPU:0"]()]]
[Finished in 2.1s with exit code 1]
[
[path: /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin]
GPUサポートでTensorflowをインストールしましたか? –
はいそれは既にインストールされています。 – user37353
私は問題を解決し、私は正しくインストールしたと確信していますが、私は再びcudaとcudnnをインストールしました。とにかく今でも動作します;) – user37353