3
私はMLとSpark MLの両方に新しく、Spark MLでニューラルネットワークを使用して予測モデルを作成しようとしていますが、.transform
メソッドを呼び出すとこのエラーが発生します。学習モデル。この問題は、OneHotEncoderを使用することによって発生します。 私はOneHotEncoderをパイプラインから取り出してみました。スパークMLのディメンションのミスマッチエラー
質問:私はOneHotEncoderをどうすれば使用できますか?このエラーは発生しませんか?
java.lang.IllegalArgumentException: requirement failed: A & B Dimension mismatch!
at scala.Predef$.require(Predef.scala:224) at org.apache.spark.ml.ann.BreezeUtil$.dgemm(BreezeUtil.scala:41) at
org.apache.spark.ml.ann.AffineLayerModel.eval(Layer.scala:163) at
org.apache.spark.ml.ann.FeedForwardModel.forward(Layer.scala:482) at
org.apache.spark.ml.ann.FeedForwardModel.predict(Layer.scala:529)
マイコード:
test_pandas_df = pd.read_csv(
'/home/piotrek/ml/adults/adult.test', names=header, skipinitialspace=True)
train_pandas_df = pd.read_csv(
'/home/piotrek/ml/adults/adult.data', names=header, skipinitialspace=True)
train_df = sqlContext.createDataFrame(train_pandas_df)
test_df = sqlContext.createDataFrame(test_pandas_df)
joined = train_df.union(test_df)
assembler = VectorAssembler().setInputCols(features).setOutputCol("features")
label_indexer = StringIndexer().setInputCol(
"label").setOutputCol("label_index")
label_indexer_fit = [label_indexer.fit(joined)]
string_indexers = [StringIndexer().setInputCol(
name).setOutputCol(name + "_index").fit(joined) for name in categorical_feats]
one_hot_pipeline = Pipeline().setStages([OneHotEncoder().setInputCol(
name + '_index').setOutputCol(name + '_one_hot') for name in categorical_feats])
mlp = MultilayerPerceptronClassifier().setLabelCol(label_indexer.getOutputCol()).setFeaturesCol(
assembler.getOutputCol()).setLayers([len(features), 20, 10, 2]).setSeed(42L).setBlockSize(1000).setMaxIter(500)
pipeline = Pipeline().setStages(label_indexer_fit
+ string_indexers + [one_hot_pipeline] + [assembler, mlp])
model = pipeline.fit(train_df)
# compute accuracy on the test set
result = model.transform(test_df)
## FAILS ON RESULT
predictionAndLabels = result.select("prediction", "label_index")
evaluator = MulticlassClassificationEvaluator(labelCol="label_index")
print "-------------------------------"
print("Test set accuracy = " + str(evaluator.evaluate(predictionAndLabels)))
print "-------------------------------"
ありがとう!モデル内