私は、イメージ内の複数のROI(関心領域)からの標準的なBag of Visual Wordsヒストグラムを計算するために既存の関数/ツールを探しています。私に説明してみましょう:画像ROIから効率的なヒストグラム計算
(1)は、各 "ピクセル" は整数を担持画像があると仮定:1 ... K ような各 "ピクセル" は、情報を
- Xを以下ており、Yは 座標1からKに
- 値
(2)固定サイズの領域を大量に仮定フォーマット内のすべての画像からのサンプルである:
- (X1、Y1) - トップは、
- (X2、Y2)の座標左 - 右座標、底
(3)領域毎に:計算の出現回数をカウントKビンヒストグラムその領域に落ちる「ピクセル」の値は、それは非常に遅い私は、コードのループのために複数のMATLABではなく、原因、次の機能を実装している
ある
function [H words] = sph_roi(wind, tree, desc, feat, bins)
% FUNCTION computes an SPH histogram for a collection of windows. Spatial
% information is captured by splitting the window in bins horizontally.
%
% [H words] = sph_roi(obj_wind, tree, desc, feat, [ bins ]);
%
% INPUT :
% wind - sampled ROI windows
% [left_x, top_y, right_x, bottom_y] - see sample_roi()
% tree - vocabulary tree
% desc - descriptors matrix
% feat - features matrix
% bins - number of horizontal cells (1=BOVW, 2... SPH)
% by default set to the multiples of window height.
%
% OUTPUT :
% H - SPH histograms
% words - word IDs found for every descriptor
%
verbose = 0;
% input argument number check
if nargin < 4
error('At least 4 input arguments required.');
end
% default number of horizontal cells
if nargin < 5
bins = -1; % will be set in multiples of each window height corresp.
end
% number of windows
num_wind = size(wind, 1);
% number of visual words
num_words = tree.K;
% pre-compute all visual words
words = vl_hikmeanspush(tree, desc);
% initialize SPH histograms matrix
H = zeros(num_words * bins, num_wind);
% compute BOVW for each ROI
for i = 1 : num_wind
if verbose == 1
fprintf('sph_roi(): processing %d/%d\n', i, num_wind);
end
% pick a window
wind_i = wind(i, :);
% get the dimensions of the window
[w h] = wind_size(wind_i);
% if was not set - the number of horizontal bins
if bins == -1
bins = round(w/h);
end
% return a list of subcell windows
scw = create_sph_wind(wind_i, bins);
for j = 1 : bins
% pick a cell
wind_tmp = scw(j, :);
% get the descriptor ids falling in that cell
ids = roi_feat_ids(wind_tmp, feat);
% compute the BOVW histogram for the current cell
h = vl_hikmeanshist(tree, words(ids));
% assemble the SPH histogram in the output matrix directly
H(1+(j-1)*num_words : j*num_words, i) = h(2:end);
end
end
function ids = roi_feat_ids(w, f)
% FUNCTION returns those feature ids that fall in the window.
%
% ids = roi_feat_ids(w, f);
%
% INPUT :
% w - window
% f - all feature points
%
% OUTPUT :
% ids - feature ids
%
% input argument number check
if nargin ~= 2
error('Two input arguments required.');
end
left_x = 1;
top_y = 2;
right_x = 3;
bottom_y = 4;
% extract and round the interest point coordinates
x = round(f(1,:));
y = round(f(2,:));
% bound successively the interest points
s1 = (x > w(left_x)); % larger than left_x
s2 = (x < w(right_x)); % smaller than right_x
s3 = (y > w(top_y)); % larger than top_y
s4 = (y < w(bottom_y)); % smaller than bottom_y
% intersection of these 4 sets are the ROI enclosed interest points
ids = s1 & s2 & s3 & s4;
% convert ids to real
ids = find(ids);
私はによって提案されたルーチンを見てきましたOpenCVとIntでさえelのMKLは何も適切ではないことが分かった。 Matlabのプロファイラを使用して、roi_feat_ids()にかなりの時間が費やされ、関数sph_roi()の各領域の外側ループが遅くなることがわかりました。 MEXファイルを実装する前に、既存のコードをリサイクルできるかどうかを確認したいと思います。
ご提案いただきありがとうございます。私はまだ完全にデバッグされていないこの機能のMEX版を実装しました。私はこの高速化されたコードとどのように比較するのかを見ていきます。乾杯! –
Matlab MEXのシンプルで効率的な実装は、私のブログで利用できます:http://bit.ly/IgurHD –