入力信号があり、FFTを計算しました。その後、すべてのスペクトルではなく、周波数の帯域でのみRMSを計算する必要があります。各周波数でRMSを取得
Parsevalの定理を適用して、スペクトル全体のRMS計算を解決しましたが、このようなRMSの「選択的」をどのように計算しますか?私は関心のある3つのフリークエンシー(F0、FC、F1)を得るために正確に計算されたインデックスを持っていますが、このバンドにRMSを適用すると、Parsevalの定理は保持されていないようです。
固有の10KHzの周波数を受信しましたが、FFTの全スペクトルからのRMSは正しいですが、10KHzの周波数でRMSを選択すると、間違った結果が得られます(RMSから正しく-0.4Vになります)。結果として、私はスペクトル内で1つのfrecuencyしか得られなかった。ここでは、選択的な計算私のRMSを見ることができます:
public static double RMSSelectiveCalculation(double[] trama, double samplingFreq, double F0, double Fc, double F1)
{
//Frequency of interest
double fs = samplingFreq; // Sampling frequency
double t1 = 1/fs; // Sample time
int l = trama.Length; // Length of signal
double rmsSelective = 0;
double ParsevalB = 0;
double scalingFactor = fs;
double dt = 1/fs;
// We just use half of the data as the other half is simetric. The middle is found in NFFT/2 + 1
int nFFT = (int)Math.Pow(2, NextPow2(l));
double df = fs/nFFT;
if (nFFT > 655600)
{ }
// Create complex array for FFT transformation. Use 0s for imaginary part
Complex[] samples = new Complex[nFFT];
Complex[] reverseSamples = new Complex[nFFT];
double[] frecuencies = new double[nFFT];
for (int i = 0; i < nFFT; i++)
{
frecuencies[i] = i * (fs/nFFT);
if (i >= trama.Length)
{
samples[i] = new MathNet.Numerics.Complex(0, 0);
}
else
{
samples[i] = new MathNet.Numerics.Complex(trama[i], 0);
}
}
ComplexFourierTransformation fft = new ComplexFourierTransformation(TransformationConvention.Matlab);
fft.TransformForward(samples);
ComplexVector s = new ComplexVector(samples);
//The indexes will get the index of each frecuency
int f0Index, fcIndex, f1Index;
double k = nFFT/fs;
f0Index = (int)Math.Floor(k * F0);
fcIndex = (int)Math.Floor(k * Fc);
f1Index = (int)Math.Ceiling(k * F1);
for (int i = f0Index; i <= f1Index; i++)
{
ParsevalB += Math.Pow(Math.Abs(s[i].Modulus/scalingFactor), 2.0);
}
ParsevalB = ParsevalB * df;
double ownSF = fs/l; //This is a own scale factor used to take the square root after
rmsSelective = Math.Sqrt(ParsevalB * ownSF);
samples = null;
s = null;
return rmsSelective;
}
あなたは、例えば、数回前にこの同じ質問をしなかったの[FFTからRMSを取得する](http://stackoverflow.com/questions/43452138/getting-rms-from-fft)と[FFTからRMSを取得する](http://stackoverflow.com/questions/43363860/get-rms -from-fft)? –