2016-10-05 26 views

答えて

2

あなたは選択すべての列名にlist comprehensionsを使用することができます。

df = pd.DataFrame({'fooA':[1,2,3], 
        'fooB':[4,5,6], 
        'fooC':[7,8,9], 
        'D':[1,3,5], 
        'E':[5,3,6], 
        'F':[7,4,3]}) 

print (df) 
    D E F fooA fooB fooC 
0 1 5 7  1  4  7 
1 3 3 4  2  5  8 
2 5 6 3  3  6  9 

foo = [col for col in df.columns if col.startswith('foo')] 
print (foo) 
['fooA', 'fooB', 'fooC'] 

other = [col for col in df.columns if not col.startswith('foo')] 
print (other) 
['D', 'E', 'F'] 

print (df[foo]) 
    fooA fooB fooC 
0  1  4  7 
1  2  5  8 
2  3  6  9 

print (df[other]) 
    D E F 
0 1 5 7 
1 3 3 4 
2 5 6 3 

別の解決策をfilterdifferenceで:

df1 = df.filter(regex='^foo') 
print (df1) 
    fooA fooB fooC 
0  1  4  7 
1  2  5  8 
2  3  6  9 

print (df.columns.difference(df1.columns)) 
Index(['D', 'E', 'F'], dtype='object') 

print (df[df.columns.difference(df1.columns)]) 
    D E F 
0 1 5 7 
1 3 3 4 
2 5 6 3 

タイミング

df3 = df.copy() 
df4 = df.copy() 

def a(df): 
    df1 = df.filter(regex='^foo') 
    df2 = df[df.columns.difference(df1.columns)] 
    return df1, df2 

def b(df): 
    df1 = df[[col for col in df.columns if col.startswith('foo')]] 
    df2 = df[[col for col in df.columns if not col.startswith('foo')]] 
    return df1, df2 

def c(df): 
    df1 = df[df.columns[df.columns.str.startswith('foo')]] 
    df2 = df[df.columns[~df.columns.str.startswith('foo')]] 
    return df1, df2 

df1, df2 = a(df) 
print (df1) 
print (df2)  

df1, df2 = b(df3) 
print (df1) 
print (df2) 

df1, df2 = c(df4) 
print (df1) 
print (df2) 
関連する問題