私はTensorFlowを使用してバイナリ分類ニューラルネットワークをトレーニングしています。TensorFlowでのcross_entropy計算の2つのバージョンの違い
半年前、私はTensorFlowウェブサイトDeep MNIST for Expertsのチュートリアルに従いました。
今日、両方のコード(チュートリアルと私が書いたコード)を比較すると、クロスエントロピー計算の違いがわかります。私はそれがなぜあるのか分からないという違いがあります。
チュートリアルのように計算され、クロスエントロピーは次のとおりです。
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv, y_))
次のように私のコードに計算がある間:
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
私はTensorflowに新たなんです、私は何かが欠けていると感じます。 Mabeyの違いは、TensorFlowチュートリアルの2つのバージョンの違いですか? 2行の実際の違いは何ですか?
本当にありがとうございます。ありがとう!
チュートリアルから該当するコード:
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
...
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv, y_))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.global_variables_initializer())
マイコード:
# load data
folds = build_database_tuple.load_data(data_home_dir=data_home_dir,validation_ratio=validation_ratio,patch_size=patch_size)
# starting the session. using the InteractiveSession we avoid build the entiee comp. graph before starting the session
sess = tf.InteractiveSession()
# start building the computational graph
# the 'None' indicates the number of classes - a value that we wanna leave open for now
x = tf.placeholder(tf.float32, shape=[None, patch_size**2]) #input images - 28x28=784
y_ = tf.placeholder(tf.float32, shape=[None, 2]) #output classes (using one-hot vectors)
# the vriables for the linear layer
W = tf.Variable(tf.zeros([(patch_size**2),2])) #weights - 784 input features and 10 outputs
b = tf.Variable(tf.zeros([2])) #biases - 10 classes
# initialize all the variables using the session, in order they could be used in it
sess.run(tf.initialize_all_variables())
# implementation of the regression model
y = tf.nn.softmax(tf.matmul(x,W) + b)
# Done!
# FIRST LAYER:
# build the first layer
W_conv1 = weight_variable([first_conv_kernel_size, first_conv_kernel_size, 1, first_conv_output_channels]) # 5x5 patch, 1 input channel, 32 output channels (features)
b_conv1 = bias_variable([first_conv_output_channels])
x_image = tf.reshape(x, [-1,patch_size,patch_size,1]) # reshape x to a 4d tensor. 2,3 are the image dimensions, 4 is ine color channel
# apply the layers
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
# SECOND LAYER:
# 64 features each 5x5 patch
W_conv2 = weight_variable([sec_conv_kernel_size, sec_conv_kernel_size, patch_size, sec_conv_output_channels])
b_conv2 = bias_variable([sec_conv_output_channels])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
# FULLY CONNECTED LAYER:
# 1024 neurons, 8x8 - new size after 2 pooling layers
W_fc1 = weight_variable([(patch_size/4) * (patch_size/4) * sec_conv_output_channels, fc_vec_size])
b_fc1 = bias_variable([fc_vec_size])
h_pool2_flat = tf.reshape(h_pool2, [-1, (patch_size/4) * (patch_size/4) * sec_conv_output_channels])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# dropout layer - meant to reduce over-fitting
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# READOUT LAYER:
# softmax regression
W_fc2 = weight_variable([fc_vec_size, 2])
b_fc2 = bias_variable([2])
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
# TRAIN AND EVALUATION:
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.initialize_all_variables())