NLTKを使用したNaive Bayesianクラシファイアを実装しています。しかし、抽出された特徴を持つ分類器を訓練すると、「解凍するには値が大きすぎます」というエラーが発生します。私はちょうどパイソンの初心者です。ここにコードがあります。プログラムはファイルからテキストを読み取り、これらのファイルから機能を抽出しています。 NLTKブックページhttp://www.nltk.org/book/ch06.html見てNLTKによるセンチメント分類ナイーブベイズ分類器
import nltk.classify.util,os,sys;
from nltk.classify import NaiveBayesClassifier;
from nltk.corpus import stopwords;
from nltk.tokenize import word_tokenize,RegexpTokenizer;
import re;
TAG_RE = re.compile(r'<[^>]+>')
def remove_tags(text):
return TAG_RE.sub('', text)
def word_feats(words):
return dict([(word,True) for word in words])
def feature_extractor(sentiment):
path = "train/"+sentiment+"/"
files = os.listdir(path);
feats = {};
i = 0;
for file in files:
f = open(path+file,"r", encoding='utf-8');
review = f.read();
review = remove_tags(review);
stopWords = (stopwords.words("english"))
tokenizer = RegexpTokenizer(r"\w+");
tokens = tokenizer.tokenize(review);
features = word_feats(tokens);
feats.update(features)
return feats;
posative_feat = feature_extractor("pos");
p = open("posFeat.txt","w", encoding='utf-8');
p.write(str(posative_feat));
negative_feat = feature_extractor("neg");
n = open("negFeat.txt","w", encoding='utf-8');
n.write(str(negative_feat));
plength = int(len(posative_feat)*3/4);
nlength = int(len(negative_feat)*3/4)
totalLength = plength+nlength;
trainFeatList = {}
testFeatList = {}
i = 0
for items in posative_feat.items():
i +=1;
value = {items[0]:items[1]}
if(i<plength):
trainFeatList.update(value);
else:
testFeatList.update(value);
j = 0
for items in negative_feat.items():
j +=1;
value = {items[0]:items[1]}
if(j<plength):
trainFeatList.update(value);
else:
testFeatList.update(value);
classifier = NaiveBayesClassifier.train(trainFeatList)
print(nltk.classify.util.accuracy(classifier,testFeatList));
classifier.show_most_informative_features();
[NLTK精度:「ValueError:アンパックする値が多すぎます」](http://stackoverflow.com/questions/31920199/nltk-accuracy-valueerror-to-many-values-to-unpack ) – Pierre