8
def train():
# Model
model = Model()
# Loss, Optimizer
global_step = tf.Variable(1, dtype=tf.int32, trainable=False, name='global_step')
loss_fn = model.loss()
optimizer = tf.train.AdamOptimizer(learning_rate=TrainConfig.LR).minimize(loss_fn, global_step=global_step)
# Summaries
summary_op = summaries(model, loss_fn)
with tf.Session(config=TrainConfig.session_conf) as sess:
# Initialized, Load state
sess.run(tf.global_variables_initializer())
model.load_state(sess, TrainConfig.CKPT_PATH)
writer = tf.summary.FileWriter(TrainConfig.GRAPH_PATH, sess.graph)
# Input source
data = Data(TrainConfig.DATA_PATH)
loss = Diff()
for step in xrange(global_step.eval(), TrainConfig.FINAL_STEP):
mixed_wav, src1_wav, src2_wav, _ = data.next_wavs(TrainConfig.SECONDS, TrainConfig.NUM_WAVFILE, step)
mixed_spec = to_spectrogram(mixed_wav)
mixed_mag = get_magnitude(mixed_spec)
src1_spec, src2_spec = to_spectrogram(src1_wav), to_spectrogram(src2_wav)
src1_mag, src2_mag = get_magnitude(src1_spec), get_magnitude(src2_spec)
src1_batch, _ = model.spec_to_batch(src1_mag)
src2_batch, _ = model.spec_to_batch(src2_mag)
mixed_batch, _ = model.spec_to_batch(mixed_mag)
# Initializae our callback.
#early_stopping_cb = EarlyStoppingCallback(val_acc_thresh=0.5)
l, _, summary = sess.run([loss_fn, optimizer, summary_op],
feed_dict={model.x_mixed: mixed_batch, model.y_src1: src1_batch,
model.y_src2: src2_batch})
loss.update(l)
print('step-{}\td_loss={:2.2f}\tloss={}'.format(step, loss.diff * 100, loss.value))
writer.add_summary(summary, global_step=step)
# Save state
if step % TrainConfig.CKPT_STEP == 0:
tf.train.Saver().save(sess, TrainConfig.CKPT_PATH + '/checkpoint', global_step=step)
writer.close()
私は、.wavファイルの音声から音楽を分離するこの神経ネットワークコードを持っています。 列車区間を停止するための早期停止アルゴリズムを導入するにはどうすればよいですか?私は、ValidationMonitorに関するいくつかのプロジェクトを見ています。誰か助けてくれますか?テンソルフローで早期停止を実装する方法