2016-06-27 11 views
1

私はRにとって非常に新しいです。Mathematicaでデータをインポートする際に問題が発生していたので、Rは分析にはるかに適しているため、スイッチを入れることにしました。私は、今インポートできるデータの分析を行うために、いくつかの機械学習技術を構築しています。これは、終了時に記号的回帰を行う必要がある遺伝的プログラミングの実装です。エラー以外のスクリプトは、ほぼ完成しているはずです(私は合成演算子をプログラミングし、除算を保護し、基本関数のリストを完成させる必要があります)。解決されたスクリプトをプログラミング中に私は前の問題を抱えていました(R Error Genetic Programming Implementation)。私は約1日スクリプトをデバッグしていますが、私はすべてアイデアがありません。R GPインプリメンテーションエラー

私のエラーメッセージは次のとおりです。

Error in makeStrName(nextGen) : object 'nextGen' not found 
> 
> #Print the string versions of the five functions with the lowest RMSE evolved. 
> byRMSEList<-sortByRMSE(populationsBestTenStr) 
Error: object 'totalTwo' not found 
> for(i in 1:5) 
+ { 
+ byRMSEList[[i]] 
+ } 
Error: object 'byRMSEList' not found 

はここに私のスクリプトです。私は現在RStudioを使用しています。助けるために時間を割いてくれてありがとう:

library("datasets") 

operators<-list("+","*","-","/","o") 
funcs<-list("x","log(x)","sin(x)","cos(x)","tan(x)") 

#Allows me to map a name to each element in a numerical list. 
makeStrName<-function(listOfItems) 
{ 
    for(i in 1:length(listOfItems)) 
    { 
    names(listOfItems)[i]=paste("x",i,sep="") 
    } 
    return(listOfItems) 
} 

#Allows me to replace each random number in a vector with the corresponding 
#function in a list of functions. 

mapFuncList<-function(funcList,rndNumVector) 
{ 
    for(i in 1:length(funcList)) 
    { 
    rndNumVector[rndNumVector==i]<-funcList[i] 
    } 
    return(rndNumVector) 
} 

#Will generate a random function from the list of functions and a random sample. 
generateOrganism<-function(inputLen,inputSeed, funcList) 
{ 
    set.seed(inputSeed) 
    rnd<-sample(1:length(funcList),inputLen,replace=T) 
    Org<-mapFuncList(funcList,rnd) 
    return(Org) 
} 

#Will generate a series of "Organisms" 
genPopulation<-function(popSize,initialSeed,initialSize,functions) 
{ 
    population<-list() 
    for(i in 1:popSize) 
    { 
    population <- c(population,generateOrganism(initialSize,initialSeed+i,functions)) 
    } 
    populationWithNames<-makeStrName(population) 
    return(populationWithNames) 
} 

#Turns the population of functions (which are actually strings in "") into 
#actual functions. (i.e. changes the mode of the list from string to function). 

funCreator<-function(snippet) 
{ 
    txt=snippet 
    function(x) 
    { 
    exprs <- parse(text = txt) 
    eval(exprs) 
    } 
} 

#Applies a fitness function to the population. Puts the best organism in 
#the hallOfFame. 
evalPopulation<-function(populationFuncList, inputData, outputData, populationStringList) 
{ 
    #rmse <- sqrt(mean((sim - obs)^2)) 
    for(i in 1:length(populationStringList)) 
    { 
    stringFunc<-populationStringList[[i]] 
    total<-list(mode="numeric",length=length(inputData)) 
    topTenPercentFunctionList<-list() 
    topTenPercentRMSEList<-list() 
    topTenPercentStringFunctionList<-list() 
    tempFunc<-function(x){x} 
    for(z in 1:length(inputData)) 
    { 
     total<-c(total,(abs(populationFuncList[[i]](inputData[[z]])-outputData[[z]]))) 
     tempFunc<-populationFuncList[[i]] 
    } 
    rmse<-sqrt(mean(total*total)) 
    topTenPercentVal<-length(populationFuncList)*0.1 
    if(length(topTenPercentFunctionList)<topTenPercentVal||RMSE<min(topTenPercentRMSEList)) 
    { 
     topTenPercentStringFunctionList<-c(topTenPercentStringFunctionList,stringFunc) 
     topTenPercentRMSEList<-c(topTenPercentRMSEList, rmse) 
     topTenPercentFunctionList<-c(topTenPercentFunctionList, tempFunc) 
    } 
    } 
    return(topTenPercentStringFunctionList) 
} 
#Get random operator 
getRndOp<-function(seed) 
{ 
    set.seed(seed) 
    rndOpNum<-sample(1:length(operators),1,replace=T) 
    operation<-operators[[rndOpNum]] 
    return(operation) 
} 

#Mutation Operators 

#This attaches a new appendage to an organism 
endNodeMutation<-function(strFunc,seed) 
{ 
    op<-getRndOp(seed) 
    strFunc<-c(strFunc,op) 
    newAppendage<-generateOrganism(1,seed+2,funcs) 
    strFunc<-c(strFunc,newAppendage) 
    return(strFunc) 
} 

#This is a mutation that occurs at a random locaiton in an organism 
rndNodeMutation<-function(strFunc,seed,secondSeed) 
{ 
    op<-getRndOp(seed) 
    halfStrFunc<-((length(strFunc))/2) 
    set.seed(seed) 
    randomStart<-sample(1:halfStrFunc,1,replace=T) 
    set.seed(secondSeed) 
    randomEnd<-2*(sample(1:length(halfStrFunc),1,replace=T)) 
    strFuncUpdate<-substr(strFunc,randomStart,randomEnd) 
    strFuncUpdate<-c(strFuncUpdate,op) 
    newAppendage<-generateOrganism(1,seed+2,funcs) 
    strFuncUpdate<-c(strFuncUpdate,newAppendage) 
    return(strFuncUpdate) 
} 

#Crossover Operators 

#Crossover operator that attaches otherStrFunc to strFunc at the endpoint of strFunc 
crossoverConcatenationOperator<-function(strFunc,otherStrFunc) 
{ 
    newStrFunc<-c(strFunc,otherStrFunc) 
    return(newStrFunc) 
} 

#Crossover Operation that starts and ends at random points in the concatenation 
randomCrossoverOperator<-function(strFunc,otherStrFunc,seed,secondSeed) 
{ 
    set.seed(seed) 
    wholeLength<-(length(strFunc)+length(otherStrFunc)) 
    startRndNum<-sample(1:length(strFunc),1,replace=T) 
    set.seed(secondSeed) 
    endRndNum<-sample(length(strFunc):wholeLength,1,replace=T) 
    concatenatedFunc<-c(strFunc,otherStrFunc) 
    newFunc<-substr(concatenatedFunc,startRndNum,endRndNum) 
    return(newFunc) 
} 
evolve<-function(strFuncList,tenPercentStrFuncList) 
{ 
    #Detach the bottom ninety percent to the top ten percent 
    evolveList<-substr(strFuncList,length(tenPercentStrFuncList),length(strFuncList)) 
    #Get sizes. Will use a random mutation, then random crossover, then 
    #random mutation, then random crossover at percentages with 0.05,0.45,0.05,0.45 
    #respectively 
    size<-length(evolveList) 
    mutateNum<-0.1*size 
    crossoverNum<-0.9*size 
    halfMutateNum<-0.05*size 
    halfCrossoverNum<-0.45*size 
    roundedMutateNum<-floor(mutateNum) 
    roundedCrossoverNum<-floor(crossoverNum) 
    roundedHalfMutateNum<-floor(halfMutateNum) 
    roundedHalfCrossoverNum<-floor(halfCrossoverNum) 

    #Calls the functions for those percentage of organisms in that order 
    for(i in 1:roundedHalfMutateNum) 
    { 
    set.seed(i) 
    rndOne<-sample(0:1000,1,replace=T) 
    set.seed(i+10000) 
    rndTwo<-sample(0:10000,1,replace=T) 
    newFunc<-rndNodeMutation(evolveList[[i]],rndOne,rndTWo) 
    evolveList[[i]]<-newFunc 
    } 
    for (i in roundedHalfMutateNum:(roundedHalfCrossoverNum+roundedHalfMutateNum)) 
    { 
    set.seed(i) 
    rndOne<-sample(0:1000,1,replace=T) 
    set.seed(i+10000) 
    rndTwo<-sample(0:10000,1,replace=T) 
    newFunc<-rndCrossoverOperation(evolveList[[i]],evolveList[[i+1]],rndOne,rndTwo) 
    firstSubstr<-substr(evolveList,1,i-1) 
    secondSubstr<-substr(evolveLIst,i+2,length(evolveList)) 
    halfSubstr<-c(firstSubstr,newFunc) 
    evolveList<-c(halfSubstr,secondSubstr) 
    } 
    for(i in (roundedHalfCrossoverNum+roundedHalfMutateNum):(roundedHalfCrossoverNum+roundedMutateNum)) 
    { 
    set.seed(i) 
    rndOne<-sample(0:1000,1,replace=T) 
    set.seed(i+10000) 
    rndTwo<-sample(0:10000,1,replace=T) 
    newFunc<-rndNodeMutation(evolveList[[i]],rndOne,rndTWo) 
    evolveList[[i]]<-newFunc 
    } 
    for(i in (roundedHalfCrossoverNum+roundedMutateNum):(roundedCrossoverNum+roundedHalfMutateNum)) 
    { 
    set.seed(i) 
    rndOne<-sample(0:1000,1,replace=T) 
    set.seed(i+10000) 
    rndTwo<-sample(0:10000,1,replace=T) 
    newFunc<-rndCrossoverOperation(evolveList[[i]],evolveList[[i+1]],rndOne,rndTwo) 
    firstSubstr<-substr(evolveList,1,i-1) 
    secondSubstr<-substr(evolveLIst,i+2,length(evolveList)) 
    halfSubstr<-c(firstSubstr,newFunc) 
    evolveList<-c(halfSubstr,secondSubstr) 
    } 
} 

#Calculates the root mean squared of the functions in a string list. 
#Then sorts the list by RMSE. 
sortByRMSE<-function(strL) 
{ 
    for (z in 1:length(strL)) 
    { 
    for(i in 1:length(strL)) 
    { 
     nonStrFuncList<-lapply(strL,function(x){funCreator(x)}) 
     totalTwo<-c(totalTwo,(abs(nonStrFuncList[[z]](inputData[[i]])-outputData[[i]]))) 
    } 
    rmse<-sqrt(mean(totalTwo*totalTwo)) 
    strFuncsLists<-strL[order(sapply(strL, '[[', rmse))] 
    } 
    return(strFuncsLists) 
} 

#Data, Output Goal 
desiredFuncOutput<-list(1,4,9,16,25) 
dataForInput<-list(1,2,3,4,5) 

#Generate Initial Population 
POpulation<-genPopulation(4,1,1,funcs) 
POpulationFuncList <- lapply(setNames(POpulation,names(POpulation)),function(x){funCreator(x)}) 

#Get and save top ten percent in bestDudes 
bestDudes<-evalPopulation(POpulationFuncList,dataForInput,desiredFuncOutput,POpulation) 
#Evolve the rest 
NewBottomNinetyPercent<-evolve(POpulation,bestDudes) 
#Concatenate the two to make a new generation 
nextGen<-c(bestDudes,NewBottomNinetyPercent) 

#Declare lists, 
populationsBestTenStr<-list() 
populationsFuncList<-list() 

#Run ten generations. 
for(i in 1:10) 
{ 
    nextGen<-makeStrName(nextGen) 
    populationsFuncList<-lapply(setNames(nextGen,names(nextGen)),function(x){funCreator(x)}) 
    populationsBestTenStr<-evalPopulation(populationsFuncList,dataForInput,desiredFuncOutput,nextGen) 
    nextGen<-evolve(populations,populationsBestTenStr) 
} 

#Print the string versions of the five functions with the lowest RMSE evolved. 
byRMSEList<-sortByRMSE(populationsBestTenStr) 
for(i in 1:5) 
{ 
    byRMSEList[[i]] 
} 

答えて

0
library("datasets") 

operators<-list("+","*","-","/","o") 
funcs<-list("x","log(x)","sin(x)","cos(x)","tan(x)") 

# Fixed: 
# evolveLIst inconsistently typed as evolveList 
# rndCrossoverOperation inconsistently typed as randomCrossoverOperator 
# rndTWo inconsistently typed as rndTwo 
# broken substr 
# broken condition leading to for(i in 1:0) 
# misc. others 

#Allows me to map a name to each element in a numerical list. 
makeStrName<-function(listOfItems) 
{ 
    for(i in 1:length(listOfItems)) 
    { 
    names(listOfItems)[i]=paste("x",i,sep="") 
    } 
    return(listOfItems) 
} 

#Allows me to replace each random number in a vector with the corresponding 
#function in a list of functions. 

mapFuncList<-function(funcList,rndNumVector) 
{ 
    for(i in 1:length(funcList)) 
    { 
    rndNumVector[rndNumVector==i]<-funcList[i] 
    } 
    return(rndNumVector) 
} 

#Will generate a random function from the list of functions and a random sample. 
generateOrganism<-function(inputLen,inputSeed, funcList) 
{ 
    set.seed(inputSeed) 
    rnd<-sample(1:length(funcList),inputLen,replace=T) 
    Org<-mapFuncList(funcList,rnd) 
    return(Org) 
} 

#Will generate a series of "Organisms" 
genPopulation<-function(popSize,initialSeed,initialSize,functions) 
{ 
    population<-list() 
    for(i in 1:popSize) 
    { 
    population <- c(population,generateOrganism(initialSize,initialSeed+i,functions)) 
    } 
    populationWithNames<-makeStrName(population) 
    return(populationWithNames) 
} 

#Turns the population of functions (which are actually strings in "") into 
#actual functions. (i.e. changes the mode of the list from string to function). 

funCreator<-function(snippet) 
{ 
    txt=snippet 
    function(x) 
    { 
    exprs <- parse(text = txt) 
    eval(exprs) 
    } 
} 

#Applies a fitness function to the population. Puts the best organism in 
#the hallOfFame. 
evalPopulation<-function(populationFuncList=POpulationFuncList, inputData=dataForInput, outputData=desiredFuncOutput, 
         populationStringList=POpulation) 
{ 
    #rmse <- sqrt(mean((sim - obs)^2)) 
    for(i in 1:length(populationStringList)) 
    { 
    stringFunc<-populationStringList[[i]] 
    total<-as.numeric(length(inputData)) 
    topTenPercentFunctionList<-list() 
    topTenPercentRMSEList<-list() 
    topTenPercentStringFunctionList<-list() 
    tempFunc<-function(x){x} 
    for(z in 1:length(inputData)) 
    { 
     total<-c(total,(abs(populationFuncList[[i]](inputData[[z]])-outputData[[z]]))) 
     tempFunc<-populationFuncList[[i]] 
    } 
    rmse<-sqrt(mean(total^2)) 
    topTenPercentVal<-length(populationFuncList)*0.1 
    if(length(topTenPercentFunctionList)<topTenPercentVal||RMSE<min(topTenPercentRMSEList)) 
    { 
     topTenPercentStringFunctionList<-c(topTenPercentStringFunctionList,stringFunc) 
     topTenPercentRMSEList<-c(topTenPercentRMSEList, rmse) 
     topTenPercentFunctionList<-c(topTenPercentFunctionList, tempFunc) 
    } 
    } 
    return(topTenPercentStringFunctionList) 
} 
#Get random operator 
getRndOp<-function(seed) 
{ 
    set.seed(seed) 
    rndOpNum<-sample(1:length(operators),1,replace=T) 
    operation<-operators[[rndOpNum]] 
    return(operation) 
} 

#Mutation Operators 

#This attaches a new appendage to an organism 
endNodeMutation<-function(strFunc,seed) 
{ 
    op<-getRndOp(seed) 
    strFunc<-c(strFunc,op) 
    newAppendage<-generateOrganism(1,seed+2,funcs) 
    strFunc<-c(strFunc,newAppendage) 
    return(strFunc) 
} 

#This is a mutation that occurs at a random locaiton in an organism 
rndNodeMutation<-function(strFunc,seed,secondSeed) 
{ 
    op<-getRndOp(seed) 
    halfStrFunc<-((length(strFunc))/2) 
    set.seed(seed) 
    randomStart<-sample(1:halfStrFunc,1,replace=T) 
    set.seed(secondSeed) 
    randomEnd<-2*(sample(1:length(halfStrFunc),1,replace=T)) 
    strFuncUpdate<-substr(strFunc,randomStart,randomEnd) 
    strFuncUpdate<-c(strFuncUpdate,op) 
    newAppendage<-generateOrganism(1,seed+2,funcs) 
    strFuncUpdate<-c(strFuncUpdate,newAppendage) 
    return(strFuncUpdate) 
} 

#Crossover Operators 

#Crossover operator that attaches otherStrFunc to strFunc at the endpoint of strFunc 
crossoverConcatenationOperator<-function(strFunc,otherStrFunc) 
{ 
    newStrFunc<-c(strFunc,otherStrFunc) 
    return(newStrFunc) 
} 

#Crossover Operation that starts and ends at random points in the concatenation 
rndCrossoverOperation<-function(strFunc,otherStrFunc,seed,secondSeed) # fixed function name 
{ 
    set.seed(seed) 
    wholeLength<-(length(strFunc)+length(otherStrFunc)) 
    startRndNum<-sample(1:length(strFunc),1,replace=T) 
    set.seed(secondSeed) 
    endRndNum<-sample(length(strFunc):wholeLength,1,replace=T) 
    concatenatedFunc<-c(strFunc,otherStrFunc) 
    newFunc<-substr(concatenatedFunc,startRndNum,endRndNum) 
    return(newFunc) 
} 
evolve<-function(strFuncList=POpulation,tenPercentStrFuncList=bestDudes) 
{ 
    #Detach the bottom ninety percent to the top ten percent 
    evolveList<-strFuncList[!strFuncList %in% tenPercentStrFuncList] # fixed broken substring 
    #Get sizes. Will use a random mutation, then random crossover, then 
    #random mutation, then random crossover at percentages with 0.05,0.45,0.05,0.45 
    #respectively 
    size<-length(evolveList) 
    mutateNum<-0.1*size 
    crossoverNum<-0.9*size 
    halfMutateNum<-0.05*size 
    halfCrossoverNum<-0.45*size 
    roundedMutateNum<-floor(mutateNum) 
    roundedCrossoverNum<-floor(crossoverNum) 
    roundedHalfMutateNum<-floor(halfMutateNum) 
    roundedHalfCrossoverNum<-floor(halfCrossoverNum) 

    #Calls the functions for those percentage of organisms in that order 
    if(roundedHalfMutateNum < 1) roundedHalfMutateNum <- 1 
    for(i in 1:roundedHalfMutateNum) 
    { 
    set.seed(i) 
    rndOne<-sample(0:1000,1,replace=T) 
    set.seed(i+10000) 
    rndTwo<-sample(0:10000,1,replace=T) 
    newFunc<-rndNodeMutation(evolveList[[i]],rndOne,rndTwo) # fixed case 
    evolveList[[i]]<-newFunc 
    } 
    for (i in roundedHalfMutateNum:(roundedHalfCrossoverNum+roundedHalfMutateNum)) 
    { 
    set.seed(i) 
    rndOne<-sample(0:1000,1,replace=T) 
    set.seed(i+10000) 
    rndTwo<-sample(0:10000,1,replace=T) 
    newFunc<-rndCrossoverOperation(evolveList[[i]],evolveList[[i+1]],rndOne,rndTwo) 
    firstSubstr<-substr(evolveList,1,i-1) 
    secondSubstr<-substr(evolveList,i+2,length(evolveList)) 
    halfSubstr<-c(firstSubstr,newFunc) 
    evolveList<-c(halfSubstr,secondSubstr) 
    } 
    for(i in (roundedHalfCrossoverNum+roundedHalfMutateNum):(roundedHalfCrossoverNum+roundedMutateNum)) 
    { 
    set.seed(i) 
    rndOne<-sample(0:1000,1,replace=T) 
    set.seed(i+10000) 
    rndTwo<-sample(0:10000,1,replace=T) 
    newFunc<-rndNodeMutation(evolveList[[i]],rndOne,rndTwo) 
    evolveList[[i]]<-newFunc 
    } 
    for(i in (roundedHalfCrossoverNum+roundedMutateNum):(roundedCrossoverNum+roundedHalfMutateNum)) 
    { 
    set.seed(i) 
    rndOne<-sample(0:1000,1,replace=T) 
    set.seed(i+10000) 
    rndTwo<-sample(0:10000,1,replace=T) 
    newFunc<-rndCrossoverOperation(evolveList[[i]],evolveList[[i+1]],rndOne,rndTwo) 
    firstSubstr<-substr(evolveList,1,i-1) 
    secondSubstr<-substr(evolveList,i+2,length(evolveList)) 
    halfSubstr<-c(firstSubstr,newFunc) 
    evolveList<-c(halfSubstr,secondSubstr) 
    } 
} 

#Calculates the root mean squared of the functions in a string list. 
#Then sorts the list by RMSE. 
sortByRMSE<-function(strL) 
{ 
    for (z in 1:length(strL)) 
    { 
    for(i in 1:length(strL)) 
    { 
     nonStrFuncList<-lapply(strL,function(x){funCreator(x)}) 
     totalTwo<-c(totalTwo,(abs(nonStrFuncList[[z]](inputData[[i]])-outputData[[i]]))) 
    } 
    rmse<-sqrt(mean(totalTwo*totalTwo)) 
    strFuncsLists<-strL[order(sapply(strL, '[[', rmse))] 
    } 
    return(strFuncsLists) 
} 

#Data, Output Goal 
desiredFuncOutput<-list(1,4,9,16,25) 
dataForInput<-list(1,2,3,4,5) 

#Generate Initial Population 
POpulation<-genPopulation(4,1,1,funcs) 
POpulationFuncList <- lapply(setNames(POpulation,names(POpulation)),function(x){funCreator(x)}) 

#Get and save top ten percent in bestDudes 
bestDudes<-evalPopulation(POpulationFuncList,dataForInput,desiredFuncOutput,POpulation) 
#Evolve the rest 
NewBottomNinetyPercent<-evolve(POpulation,bestDudes) 
#Concatenate the two to make a new generation 
nextGen<-c(bestDudes,NewBottomNinetyPercent) 

#Declare lists, 
populationsBestTenStr<-list() 
populationsFuncList<-list() 

#Run ten generations. 
for(i in 1:10) 
{ 
    nextGen<-makeStrName(nextGen) 
    populationsFuncList<-lapply(setNames(nextGen,names(nextGen)),function(x){funCreator(x)}) 
    populationsBestTenStr<-evalPopulation(populationsFuncList,dataForInput,desiredFuncOutput,nextGen) 
    nextGen<-evolve(populations,populationsBestTenStr) 
} 

#Print the string versions of the five functions with the lowest RMSE evolved. 
byRMSEList<-sortByRMSE(populationsBestTenStr) 
for(i in 1:5) 
{ 
    byRMSEList[[i]] 
} 
+0

私は私のコードでそれを持っています。 "#Data、Output Goal desiredFuncOutput <-list(1,4,9,16,25) dataForInput <-list(1,2,3,4,5)"何らかの理由でそれがあなたのものにコピーされませんでした。固定のmapStrFunc、チップ –

+0

のおかげで、私は投稿したコードのevalPopulationの呼び出しの直上です。 –

+0

@ novice-polymath OK別のバグを修正しましたが、今は 'evolve'で動作しますが、' substr'で何をしようとしているのか分かりません。これは 'POpulation'値を任意に切り捨てているようです。私はその行のコメントを参照してくださいが、私は実際にそれを得ることはありません。あなたは私を助けることができます?私は会議に行く必要がありますが、私は今日これに戻ってきます。 –

関連する問題