2017-05-28 14 views
0

私は浅い水モデルをシミュレートするためにPythonコードをデバッグする時間を無駄に過ごしました。私は "Rossby"波を再現しているようではありません。コードは実行できますが、正しい結果が得られません。コードは以下の通りで、pythonまたはpython3を使用して実行する必要があります。ポップアップウィンドウに結果が表示されます。以下は不正確な結果のイメージです。モデルは回転のために "タワー"の左側の色が薄くなります。今、斜めに見えますが、rotUrotVという言葉は、dUdTdVdTの結果が正しいグリッドではなく更新されていると思います。まあ enter image description herePythonを使用した浅い水モデル

import numpy 
import matplotlib.pyplot as plt 
import matplotlib.ticker as tkr 
import math 

ncol = 10  # grid size (number of cells) 
nrow = ncol 

nSlices = 10000 # maximum number of frames to show in the plot 
ntAnim = 1  # number of time steps for each frame 

horizontalWrap = True # determines whether the flow wraps around, connecting 
         # the left and right-hand sides of the grid, or whether 
         # there's a wall there. 
rotationScheme = "PlusMinus" 

initialPerturbation = "Tower" 
textOutput = False 
plotOutput = True 
arrowScale = 30 

dT = 600 # seconds 
G = 9.8e-4 # m/s2, hacked (low-G) to make it run faster 
HBackground = 4000 # meters 

dX = 10.E3 # meters, small enough to respond quickly. This is a very small ocean 
# on a very small, low-G planet. 
flowConst = G # 1/s2 
dragConst = 1.E-6 # about 10 days decay time 

rotConst = [] 
for irow in range(0,nrow): 
    rotationScheme is "PlusMinus": 
     rotConst.append(-3.5e-5 * (1. - 0.8 * (irow - (nrow-1)/2)/nrow)) # rot 50% +- 

itGlobal = 0 

U = numpy.zeros((nrow, ncol+1)) 
V = numpy.zeros((nrow+1, ncol)) 
H = numpy.zeros((nrow, ncol+1)) 
dUdT = numpy.zeros((nrow, ncol)) 
dVdT = numpy.zeros((nrow, ncol)) 
dHdT = numpy.zeros((nrow, ncol)) 
dHdX = numpy.zeros((nrow, ncol+1)) 
dHdY = numpy.zeros((nrow, ncol)) 
dUdX = numpy.zeros((nrow, ncol)) 
dVdY = numpy.zeros((nrow, ncol)) 
rotV = numpy.zeros((nrow,ncol)) # interpolated to u locations 
rotU = numpy.zeros((nrow,ncol)) #    to v 


midCell = int(ncol/2) 
if initialPerturbation is "Tower": 
    H[midCell,midCell] = 1 


############################################################### 
def animStep():  
    global stepDump, itGlobal 

    for time in range(0,ntAnim): 
     #### Longitudinal derivative ########################## 
     # Calculate dHdX 
     for ix in range(0, nrow-1): 
      for iy in range(0, ncol-1): 
       # Calculate the slope for X 
       dHdX[ix,iy+1] = (H[ix,iy+1] - H[ix,iy])/dX  
     # Update the boundary cells 
     if horizontalWrap is True: # Wrapping around 
      U[:,ncol] = U[:,0] 
      H[:,ncol] = H[:,0] 
     else: # Bounded by walls on the left and right 
      U[:,0] = 0 # U at the left-hand side is zero 
      U[:,ncol-1] = 0 # U at the right-had side is zero 
     # Calculate dUdX 
     for ix in range(0, nrow): 
      for iy in range(0, ncol):  
       # Calculate the difference in U 
       dUdX[ix,iy] = (U[ix,iy+1] - U[ix,iy])/dX 
     ######################################################## 
     #### Latitudinal derivative ############################ 
     # Calculate dHdY 
     dHdY[0,:] = 0 # The top boundary gradient dHdY set to zero 
     for ix in range(0, nrow-1): # NOTE: the top row is zero 
      for iy in range(0, ncol): 
       # Calculate the slope for Y 
       dHdY[ix+1,iy] = (H[ix+1,iy] - H[ix, iy])/dX 
     # Calculate dVdY 
     V[0,:] = 0 # North wall is zero 
     V[nrow,:] = 0 # South wall is zero 
     for ix in range(0, nrow): 
      for iy in range(0, ncol): 
       # Calculate the difference in V 
       dVdY[ix,iy] = (V[ix+1,iy] - V[ix,iy])/dX 
     ######################################################### 
     #### Rotational terms ################################### 

      for ix in range(0, nrow): 
       for iy in range(0, ncol): 
        rotU[ix,iy] = rotConst[ix] * U[ix,iy] # Interpolated to U 
        rotV[ix,iy] = rotConst[ix] * V[ix,iy] # Interpolated to V 



     ########################################################## 
     #### Time derivatives #################################### 
     ## dUdT 
     for ix in range(0, nrow): 
      for iy in range(0, ncol): 
       dUdT[ix,iy] = (rotV[ix,iy]) - (flowConst * dHdX[ix,iy]) - (dragConst * U[ix,iy]) + windU[ix] 
     ## dVdT 
     for ix in range(0, nrow): 
      for iy in range(0, ncol):  
       dVdT[ix,iy] = (-rotU[ix,iy]) - (flowConst * dHdY[ix,iy]) - (dragConst * V[ix,iy]) 
     ## dHdT 
     for ix in range(0, nrow): 
      for iy in range(0, ncol): 
       dHdT[ix,iy] = -(dUdX[ix,iy] + dVdY[ix,iy]) * (HBackground/dX) 

     # Step Forward One Time Step 
     for ix in range(0,nrow): 
      for iy in range(0,ncol): 
       U[ix,iy] = U[ix,iy] + (dUdT[ix,iy] * dT) 
     for ix in range(0,nrow): 
      for iy in range(0,ncol): 
       V[ix,iy] = V[ix,iy] + (dVdT[ix,iy] * dT) 
     for ix in range(0,nrow): 
      for iy in range(0,ncol): 
       H[ix,iy] = H[ix,iy] + (dHdT[ix,iy] * dT) 
     ###########################################################   
     #### Maintain the ghost cells ############################# 
     # North wall velocity zero 
     V[0,:] = 0 
     # Horizontal wrapping 
     if horizontalWrap is True: 
      U[:,ncol] = U[:,0] 
      H[:,ncol] = H[:,0] 
     else: 
      U[:,0] = 0 
      U[:,ncol] = 0 
    itGlobal = itGlobal + ntAnim 
################################################################### 

def firstFrame(): 
    global fig, ax, hPlot 
    fig, ax = plt.subplots() 
    ax.set_title("H") 
    hh = H[:,0:ncol] 
    loc = tkr.IndexLocator(base=1, offset=1) 
    ax.xaxis.set_major_locator(loc) 
    ax.yaxis.set_major_locator(loc) 
    grid = ax.grid(which='major', axis='both', linestyle='-') 
    hPlot = ax.imshow(hh, interpolation='nearest', clim=(-0.5,0.5)) 
    plotArrows() 
    plt.show(block=False) 


def plotArrows(): 
    global quiv, quiv2 
    xx = [] 
    yy = [] 
    uu = [] 
    vv = [] 
    for irow in range(0, nrow): 
     for icol in range(0, ncol): 
      xx.append(icol - 0.5) 
      yy.append(irow) 
      uu.append(U[irow,icol] * arrowScale) 
      vv.append(0) 
    quiv = ax.quiver(xx, yy, uu, vv, color='white', scale=1) 
    for irow in range(0, nrow): 
     for icol in range(0, ncol): 
      xx.append(icol) 
      yy.append(irow - 0.5) 
      uu.append(0) 
      vv.append(-V[irow,icol] * arrowScale) 
    quiv2 = ax.quiver(xx, yy, uu, vv, color='white', scale=1) 

def updateFrame(): 
    global fig, ax, hPlot, quiv, quiv2 
    hh = H[:,0:ncol] 
    hPlot.set_array(hh) 
    quiv.remove()  
    quiv2.remove() 
    plotArrows() 
    fig.canvas.draw() 
    plt.pause(0.01) 
    print("Time: ", math.floor(itGlobal * dT/86400.*10)/10, "days") 
    print("H: ", H[1,1]) 

def textDump(): 
    #print("time step ", itGlobal)  
    #print("H", H) 
    #print("rotV") 
    #print(rotV) 
    #print("V") 
    #print(V) 
    #print("dHdX") 
    #print(dHdX) 
    #print("dHdY") 
    #print(dHdY) 
    #print("dVdY") 
    #print(dVdY) 
    #print("dHdT") 
    #print(dHdT) 
    #print("dUdT") 
    #print(dUdT) 
    #print("dVdT") 
    #print(dVdT) 
    #print("inter_u") 
    #print(inter_u) 
    #print("inter_u1") 
    #print(inter_u1) 
    #print("inter_v") 
    #print(inter_v) 
    #print("rotU") 
    #print(rotU) 
    #print("U") 
    #print(U) 
    #print("dUdX") 
    #print(dUdX) 
    #print("rotConst") 
    #print(rotConst) 


if textOutput is True: 
    textDump() 
if plotOutput is True: 
    firstFrame() 
for i_anim_step in range(0,nSlices): 
    animStep() 
    if textOutput is True: 
     textDump() 
    if plotOutput is True: 
     updateFrame() 
+1

あなたの質問はオフトピックです。デバッグの助けを求める質問(「なぜこのコードは動作しませんか?」)には、目的の動作、特定の問題またはエラー、および質問自体の中でそれを再現するのに必要な最短コードが含まれていなければなりません。明確な問題文がない質問は、他の読者にとって有用ではありません。参照:[最小限の完全で検証可能な例](http://stackoverflow.com/help/mcve)の作成方法 – timgeb

+2

質問を編集しました。 – Yusri

答えて

0

、私は私自身の問題を解決したと思う...回転用語rotUrotVが犯人です。完全なコードを以下に示します。

""" 

The first section of the code contains setup and initialization 
information. Leave it alone for now, and you can play with them later 
after you get the code filled in and running without bugs. 

""" 

# Set up python environment. numpy and matplotlib will have to be installed 
# with the python installation. 

import numpy 
import matplotlib.pyplot as plt 
import matplotlib.ticker as tkr 
import math 

# Grid and Variable Initialization -- stuff you might play around with 

ncol = 10  # grid size (number of cells) 
nrow = ncol 

nSlices = 2000  # maximum number of frames to show in the plot 
ntAnim = 10  # number of time steps for each frame 

horizontalWrap = False # determines whether the flow wraps around, connecting 
         # the left and right-hand sides of the grid, or whether 
         # there's a wall there. 
interpolateRotation = True 
rotationScheme = "PlusMinus" # "WithLatitude", "PlusMinus", "Uniform" 

# Note: the rotation rate gradient is more intense than the real world, so that 
# the model can equilibrate quickly. 

windScheme = "" # "Curled", "Uniform" 
initialPerturbation = "Tower" # "Tower", "NSGradient", "EWGradient" 
textOutput = False 
plotOutput = True 
arrowScale = 30 

dT = 600 # seconds [original 600 s] ############# 
G = 9.8e-4 # m/s2, hacked (low-G) to make it run faster 
HBackground = 4000 # meters 

dX = 10.E3 # meters, small enough to respond quickly. This is a very small ocean 
# on a very small, low-G planet. [original 10.e3 m] ######### 

dxDegrees = dX/110.e3 
flowConst = G # 1/s2 
dragConst = 10.E-6 # about 10 days decay time 
meanLatitude = 30 # degrees 

# Here's stuff you probably won't need to change 

latitude = [] 
rotConst = [] 
windU = [] 
for irow in range(0,nrow): 
    if rotationScheme is "WithLatitude": 
     latitude.append(meanLatitude + (irow - nrow/2) * dxDegrees) 
     rotConst.append(-7.e-5 * math.sin(math.radians(latitude[-1]))) # s-1 
    elif rotationScheme is "PlusMinus": 
     rotConst.append(-3.5e-5 * (1. - 0.8 * (irow - (nrow-1)/2)/nrow)) # rot 50% +- 
    elif rotationScheme is "Uniform": 
     rotConst.append(-3.5e-5) 
    else: 
     rotConst.append(0) 

    if windScheme is "Curled": 
     windU.append(1e-8 * math.sin((irow+0.5)/nrow * 2 * 3.14)) 
    elif windScheme is "Uniform": 
     windU.append(1.e-8) 
    else: 
     windU.append(0) 

itGlobal = 0 

U = numpy.zeros((nrow, ncol+1)) 
V = numpy.zeros((nrow+1, ncol)) 
H = numpy.zeros((nrow, ncol+1)) 
dUdT = numpy.zeros((nrow, ncol)) 
dVdT = numpy.zeros((nrow, ncol)) 
dHdT = numpy.zeros((nrow, ncol)) 
dHdX = numpy.zeros((nrow, ncol+1)) 
dHdY = numpy.zeros((nrow, ncol)) 
dUdX = numpy.zeros((nrow, ncol)) 
dVdY = numpy.zeros((nrow, ncol)) 
rotV = numpy.zeros((nrow,ncol)) # interpolated to u locations 
rotU = numpy.zeros((nrow,ncol)) #    to v 
# For U rotation interpolation 
inter_u = numpy.zeros((nrow,ncol)) 
# For V rotation interpolation 
inter_v = numpy.zeros((nrow,ncol)) 

midCell = int(ncol/2) 
if initialPerturbation is "Tower": 
    H[midCell,midCell] = 1 
elif initialPerturbation is "NSGradient": 
    H[0:midCell,:] = 0.1 
elif initialPerturbation is "EWGradient": 
    H[:,0:midCell] = 0.1 

""" 
This is the work-horse subroutine. It steps forward in time, taking ntAnim steps of 
duration dT. 
""" 
############################################################### 
def animStep():  
    global stepDump, itGlobal 

    for time in range(0,ntAnim): 
     #### Longitudinal derivative ########################## 
     # Calculate dHdX 
     for ix in range(0, nrow-1): 
      for iy in range(0, ncol-1): 
       # Calculate the slope for X 
       dHdX[ix,iy+1] = (H[ix,iy+1] - H[ix,iy])/dX  

     # Calculate dUdX 
     for ix in range(0, nrow): 
      for iy in range(0, ncol):  
       # Calculate the difference in U 
       dUdX[ix,iy] = (U[ix,iy+1] - U[ix,iy])/dX 
     ######################################################## 
     #### Latitudinal derivative ############################ 
     # Calculate dHdY 
     dHdY[0,:] = 0 # The top boundary gradient dHdY set to zero 
     for ix in range(0, nrow-1): # NOTE: the top row is zero 
      for iy in range(0, ncol): 
       # Calculate the slope for Y 
       dHdY[ix+1,iy] = (H[ix+1,iy] - H[ix, iy])/dX 
     # Calculate dVdY 
     for ix in range(0, nrow): 
      for iy in range(0, ncol): 
       # Calculate the difference in V 
       dVdY[ix,iy] = (V[ix+1,iy] - V[ix,iy])/dX 
     ######################################################### 
     #### Rotational terms ################################### 
     ## Interpolate to cell centers for U and V ## 
     if interpolateRotation is True: 
      # Average and rotate 
      # Temporary u for rotation 
      for ix in range(0,nrow): 
       for iy in range(0,ncol): 
        inter_u[ix,iy] = ((U[ix,iy] + U[ix,iy+1])/2) * rotConst[ix] 
      # Temporary v for rotation 
      for ix in range(0,nrow): 
       for iy in range(0,ncol): 
        inter_v[ix,iy] = ((V[ix,iy] + V[ix+1,iy])/2) * rotConst[ix] 
      # New rotV 
      for ix in range(0,nrow): 
       for iy in range(0,ncol-1):   
        rotV[ix,iy+1] = ((inter_v[ix,iy] + inter_v[ix,iy+1])/2)   
      # New rotU 
      for ix in range(0,nrow-1): 
       for iy in range(0,ncol): 
        rotU[ix+1,iy] = ((inter_u[ix,iy] + inter_u[ix+1,iy])/2)  
      if horizontalWrap is True: 
       rotV[:,0] = (rotV[:,0] + rotV[:,ncol-1])/2 
      else: 
       rotV[:,0] = 0 # Left most column 


     ## Or without interpolation ## 
     else: 
      for ix in range(0, nrow): 
       for iy in range(0, ncol): 
        rotU[ix,iy] = rotConst[ix] * U[ix,iy] # Interpolated to U 
        rotV[ix,iy] = rotConst[ix] * V[ix,iy] # Interpolated to V 

     ########################################################## 
     #### Time derivatives #################################### 
     ## dUdT 
     for ix in range(0, nrow): 
      for iy in range(0, ncol): 
       dUdT[ix,iy] = (rotV[ix,iy]) - (flowConst * dHdX[ix,iy]) - (dragConst * U[ix,iy]) + windU[ix] 
     ## dVdT 
     for ix in range(0, nrow): 
      for iy in range(0, ncol):  
       dVdT[ix,iy] = (-rotU[ix,iy]) - (flowConst * dHdY[ix,iy]) - (dragConst * V[ix,iy]) 
     ## dHdT 
     for ix in range(0, nrow): 
      for iy in range(0, ncol): 
       dHdT[ix,iy] = -(dUdX[ix,iy] + dVdY[ix,iy]) * (HBackground/dX) 

     # Step Forward One Time Step 
     for ix in range(0,nrow): 
      for iy in range(0,ncol): 
       U[ix,iy] = U[ix,iy] + (dUdT[ix,iy] * dT) 
     for ix in range(0,nrow): 
      for iy in range(0,ncol): 
       V[ix,iy] = V[ix,iy] + (dVdT[ix,iy] * dT) 
     for ix in range(0,nrow): 
      for iy in range(0,ncol): 
       H[ix,iy] = H[ix,iy] + (dHdT[ix,iy] * dT) 
     ###########################################################   
     #### Maintain the ghost cells ############################# 
     # North wall velocity zero 
     V[0,:] = 0 # North wall is zero 
     V[nrow,:] = 0 # South wall is zero 

     # Horizontal wrapping 
     if horizontalWrap is True: 
      U[:,ncol] = U[:,0] 
      H[:,ncol] = H[:,0] 
     else: 
      U[:,0] = 0 
      U[:,ncol-1] = 0 


    itGlobal = itGlobal + ntAnim 
################################################################### 

def firstFrame(): 
    global fig, ax, hPlot 
    fig, ax = plt.subplots() 
    ax.set_title("H") 
    hh = H[:,0:ncol] 
    loc = tkr.IndexLocator(base=1, offset=1) 
    ax.xaxis.set_major_locator(loc) 
    ax.yaxis.set_major_locator(loc) 
    grid = ax.grid(which='major', axis='both', linestyle='-') 
    hPlot = ax.imshow(hh, interpolation='nearest', clim=(-0.5,0.5)) 
    plotArrows() 
    plt.show(block=False) 


def plotArrows(): 
    global quiv, quiv2 
    xx = [] 
    yy = [] 
    uu = [] 
    vv = [] 
    for irow in range(0, nrow): 
     for icol in range(0, ncol): 
      xx.append(icol - 0.5) 
      yy.append(irow) 
      uu.append(U[irow,icol] * arrowScale) 
      vv.append(0) 
    quiv = ax.quiver(xx, yy, uu, vv, color='white', scale=1) 
    for irow in range(0, nrow): 
     for icol in range(0, ncol): 
      xx.append(icol) 
      yy.append(irow - 0.5) 
      uu.append(0) 
      vv.append(-V[irow,icol] * arrowScale) 
    quiv2 = ax.quiver(xx, yy, uu, vv, color='white', scale=1) 

def updateFrame(): 
    global fig, ax, hPlot, quiv, quiv2 
    hh = H[:,0:ncol] 
    hPlot.set_array(hh) 
    quiv.remove()  
    quiv2.remove() 
    plotArrows() 
    fig.canvas.draw() 
    plt.pause(0.01) 
    print("Time: ", math.floor(itGlobal * dT/86400.*10)/10, "days") 
    print("H: ", H[5,5]) 

def textDump(): 
    #print("time step ", itGlobal)  
    #print("H", H) 

    print("V") 
    print(V) 
    print("dHdX") 
    print(dHdX) 
    print("dHdY") 
    print(dHdY) 
    print("dVdY") 
    print(dVdY) 
    print("dHdT") 
    print(dHdT) 
    print("dUdT") 
    print(dUdT) 
    print("dVdT") 
    print(dVdT) 
    print("rotU") 
    print(rotU) 
    print("inter_v") 
    print(inter_v) 
    print("rotV") 
    print(rotV) 
    print("inter_u") 
    print(inter_u) 
    print("U") 
    print(U) 
    print("dUdX") 
    print(dUdX) 


if textOutput is True: 
    textDump() 
if plotOutput is True: 
    firstFrame() 
for i_anim_step in range(0,nSlices): 
    animStep() 
    if textOutput is True: 
     textDump() 
    if plotOutput is True: 
     updateFrame() 
関連する問題