1
モバイルデバイスから取得したセンサーデータに基づいてユーザーアクティビティを分類しようとしています。データセットには、ユーザーID、センサーデータ、アクティビティが含まれます。アクティビティは整数で与えられ、アクティビティは12種類あります。私が私の活動認識分類問題に使用したコードを以下に示します。私はマルチクラスの分類問題のためにApache Sparkデシジョンツリーを使用しています。マルチクラス分類にApache Sparkデシジョンツリー分類子を使用するとエラーが発生する
import java.util.HashMap;
import java.util.Map;
import scala.Tuple2;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.tree.DecisionTree;
import org.apache.spark.mllib.tree.model.DecisionTreeModel;
import org.apache.spark.mllib.util.MLUtils;
public class DecisionTreeClass {
public static void main(String args[]){
SparkConf sparkConf = new SparkConf().setAppName("DecisionTreeClass").setMaster("local[2]");
JavaSparkContext jsc = new JavaSparkContext(sparkConf);
// Load and parse the data file.
String datapath = "/home/thamali/Desktop/Project/csv/libsvm/trainlib.txt";
JavaRDD<LabeledPoint> data = MLUtils.loadLibSVMFile(jsc.sc(), datapath).toJavaRDD();
// Split the data into training and test sets (30% held out for testing)
JavaRDD<LabeledPoint>[] splits = data.randomSplit(new double[]{0.7, 0.3});
JavaRDD<LabeledPoint> trainingData = splits[0];
JavaRDD<LabeledPoint> testData = splits[1];
// Set parameters.
// Empty categoricalFeaturesInfo indicates all features are continuous.
Integer numClasses = 12;
Map<Integer, Integer> categoricalFeaturesInfo = new HashMap();
String impurity = "gini";
Integer maxDepth = 5;
Integer maxBins = 32;
// Train a DecisionTree model for classification.
final DecisionTreeModel model = DecisionTree.trainClassifier(trainingData, numClasses,
categoricalFeaturesInfo, impurity, maxDepth, maxBins);
// Evaluate model on test instances and compute test error
JavaPairRDD<Double, Double> predictionAndLabel =
testData.mapToPair(new PairFunction<LabeledPoint, Double, Double>() {
@Override
public Tuple2<Double, Double> call(LabeledPoint p) {
return new Tuple2(model.predict(p.features()), p.label());
}
});
Double testErr =
1.0 * predictionAndLabel.filter(new Function<Tuple2<Double, Double>, Boolean>() {
@Override
public Boolean call(Tuple2<Double, Double> pl) {
return !pl._1().equals(pl._2());
}
}).count()/testData.count();
System.out.println("Test Error: " + testErr);
System.out.println("Learned classification tree model:\n" + model.toDebugString());
// Save and load model
model.save(jsc.sc(), "target/tmp/myDecisionTreeClassificationModel");
DecisionTreeModel sameModel = DecisionTreeModel
.load(jsc.sc(), "target/tmp/myDecisionTreeClassificationModel");
// $example off$
}
}
上記のコードを使用すると、次の例外が発生します。誰かが問題を解決するのを助けてくれますか?
Caused by: java.lang.IllegalArgumentException: GiniAggregator given label 17.0 but requires label < numClasses (= 12).
at org.apache.spark.mllib.tree.impurity.GiniAggregator.update(Gini.scala:92)
at org.apache.spark.ml.tree.impl.DTStatsAggregator.update(DTStatsAggregator.scala:109)
at org.apache.spark.ml.tree.impl.RandomForest$.orderedBinSeqOp(RandomForest.scala:326)
at org.apache.spark.ml.tree.impl.RandomForest$.org$apache$spark$ml$tree$impl$RandomForest$$nodeBinSeqOp$1(RandomForest.scala:416)
at org.apache.spark.ml.tree.impl.RandomForest$$anonfun$org$apache$spark$ml$tree$impl$RandomForest$$binSeqOp$1$1.apply(RandomForest.scala:441)
at org.apache.spark.ml.tree.impl.RandomForest$$anonfun$org$apache$spark$ml$tree$impl$RandomForest$$binSeqOp$1$1.apply(RandomForest.scala:439)
at scala.collection.immutable.Map$Map1.foreach(Map.scala:109)
at org.apache.spark.ml.tree.impl.RandomForest$.org$apache$spark$ml$tree$impl$RandomForest$$binSeqOp$1(RandomForest.scala:439)
at org.apache.spark.ml.tree.impl.RandomForest$$anonfun$9$$anonfun$apply$9.apply(RandomForest.scala:532)
at org.apache.spark.ml.tree.impl.RandomForest$$anonfun$9$$anonfun$apply$9.apply(RandomForest.scala:532)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
at org.apache.spark.ml.tree.impl.RandomForest$$anonfun$9.apply(RandomForest.scala:532)
at org.apache.spark.ml.tree.impl.RandomForest$$anonfun$9.apply(RandomForest.scala:521)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:785)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:785)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47)
at org.apache.spark.scheduler.Task.run(Task.scala:86)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
あなたのデータをチェックしてください - 'ラベル17.0を与えられたが、ラベルを必要とする
はどうもありがとうございました持っています –