2009-08-25 12 views
13

Javascriptでの簡単なBTree実装の良い例は誰でも知っていますか?ランダムに到着する「もの」の束があり、それぞれを効率的に挿入したい。javascriptバイナリ検索ツリーの実装

最終的に、それぞれ新しいものがツリーに終わる場所に基づいてDOMに挿入されます。

私はこれをゼロからコードすることはできますが、車輪を再発明することはできません。

ありがとう

答えて

12

場合、私は文字通りの木が既にソートされた配列としてそれを保存するよりも効率あったようにこの種のデータを格納し、スプライスアレイ上のバイナリ検索を行うことがわかっ/要素を挿入します。 JavaScriptオブジェクトの作成は、明らかに無料ではありません。

OLもあります」エンコード・ツリー・イン・アレイトリック:

[5, 3, 7, 1, null, 6, 9, null, null, null, null, null, null] 

 5 
    /\ 
    3 7 
//\ 
    1 6 9 

すなわち子供(N [I])= Nと同じです[2i + 1]、N [2i + 2]である。 JavaScriptで実際に勝利を得ることができるかどうかはわかりません。

バイナリツリーのいくつかの選択肢を試してみると、ここに結果を投稿できますか? :)

+1

この「トリック」の詳細な説明はできますか?あなたが[1,3,5,6,7,9]を持っていたとしたら、その配列はどうやって得られましたか?開始配列とは対照的に、その配列を検索するときにどんな利点がありますか? – AndrewHenderson

+0

@AndrewHendersonトリックは、任意のポインタを追うために整数算術と配列逆参照を置き換えるパフォーマンスの最適化です(少なくともいくつかの言語とランタイムでは)。ツリーのルートは常にインデックス0、その子は常にインデックス1および2、子は常にインデックス3,4および5,6などとなります。 ウィキペディアに関する簡単な説明があります:https://en.wikipedia.org/wiki/Binary_tree#Arrays –

2

あなたはbuckets、あなたが必要とするすべてを持っていることができます。一般的にはBSTとして知っている

7

https://gist.github.com/alexhawkins/f993569424789f3be5db

function BinarySearchTree() { 
    this.root = null; 
} 

BinarySearchTree.prototype.makeNode = function(value) { 
    var node = {}; 
    node.value = value; 
    node.left = null; 
    node.right = null; 
    return node; 
}; 

BinarySearchTree.prototype.add = function(value) { 
    var currentNode = this.makeNode(value); 
    if (!this.root) { 
     this.root = currentNode; 
    } else { 
     this.insert(currentNode); 
    } 
    return this; 
}; 

BinarySearchTree.prototype.insert = function(currentNode) { 
    var value = currentNode.value; 
    var traverse = function(node) { 
     //if value is equal to the value of the node, ignore 
     //and exit function since we don't want duplicates 
     if (value === node.value) { 
      return; 
     } else if (value > node.value) { 
      if (!node.right) { 
       node.right = currentNode; 
       return; 
      } else 
       traverse(node.right); 
     } else if (value < node.value) { 
      if (!node.left) { 
       node.left = currentNode; 
       return; 
      } else 
       traverse(node.left); 
     } 
    }; 
    traverse(this.root); 
}; 


BinarySearchTree.prototype.contains = function(value) { 
    var node = this.root; 
    var traverse = function(node) { 
     if (!node) return false; 
     if (value === node.value) { 
      return true; 
     } else if (value > node.value) { 
      return traverse(node.right); 
     } else if (value < node.value) { 
      return traverse(node.left); 
     } 
    }; 
    return traverse(node); 
}; 


/* BREADTH FIRST TREE TRAVERSAL */ 

/* Breadth First Search finds all the siblings at each level 
    in order from left to right or from right to left. */ 

BinarySearchTree.prototype.breadthFirstLTR = function() { 
    var node = this.root; 
    var queue = [node]; 
    var result = []; 
    while (node = queue.shift()) { 
     result.push(node.value); 
     node.left && queue.push(node.left); 
     node.right && queue.push(node.right); 
    } 
    return result; 
}; 


BinarySearchTree.prototype.breadthFirstRTL = function() { 
    var node = this.root; 
    var queue = [node]; 
    var result = []; 
    while (node = queue.shift()) { 
     result.push(node.value); 
     node.right && queue.push(node.right); 
     node.left && queue.push(node.left); 
    } 
    return result; 
}; 

/*DEPTH FIRST TRAVERSALS*/ 

/* preOrder is a type of depth-first traversal that tries 
    togo deeper in the tree before exploring siblings. It 
    returns the shallowest descendants first. 

    1) Display the data part of root element (or current element) 
    2) Traverse the left subtree by recursively calling the pre-order function. 
    3) Traverse the right subtree by recursively calling the pre-order function. */ 

BinarySearchTree.prototype.preOrder = function() { 
    var result = []; 
    var node = this.root; 
    var traverse = function(node) { 
     result.push(node.value); 
     node.left && traverse(node.left); 
     node.right && traverse(node.right); 
    }; 
    traverse(node); 
    return result; 
}; 

/* inOrder traversal is a type of depth-first traversal 
    that also tries to go deeper in the tree before exploring siblings. 
    however, it returns the deepest descendents first 

    1) Traverse the left subtree by recursively calling the pre-order function. 
    2) Display the data part of root element (or current element) 
    3) Traverse the right subtree by recursively calling the pre-order function. */ 

BinarySearchTree.prototype.inOrder = function() { 
    var result = []; 
    var node = this.root; 
    var traverse = function(node) { 
     node.left && traverse(node.left); 
     result.push(node.value); 
     node.right && traverse(node.right); 
    }; 
    traverse(node); 
    return result; 
}; 

/* postOrder traversal is a type of depth-first traversal 
    that also tries to go deeper in the tree before exploring siblings. 
    however, it returns the deepest descendents first 

    1) Traverse the left subtree by recursively calling the pre-order function. 
    2) Display the data part of root element (or current element) 
    3) Traverse the right subtree by recursively calling the pre-order function. */ 


BinarySearchTree.prototype.postOrder = function() { 
    var result = []; 
    var node = this.root; 
    var traverse = function(node) { 
     node.left && traverse(node.left); 
     node.right && traverse(node.right); 
     result.push(node.value); 
    }; 
    traverse(node); 
    return result; 
}; 

//find the left most node to find the min value of a binary tree; 
BinarySearchTree.prototype.findMin = function() { 
    var node = this.root; 
    var traverse = function(node) { 
     return !node.left ? node.value : traverse(node.left); 
    }; 
    return traverse(node); 
}; 

//find the right most node to find the max value of a binary tree; 
BinarySearchTree.prototype.findMax = function() { 
    var node = this.root; 
    var traverse = function(node) { 
     return !node.right ? node.value : traverse(node.right); 
    }; 
    return traverse(node); 
}; 


BinarySearchTree.prototype.getDepth = function() { 
    var node = this.root; 
    var maxDepth = 0; 
    var traverse = function(node, depth) { 
     if (!node) return null; 
     if (node) { 
      maxDepth = depth > maxDepth ? depth : maxDepth; 
      traverse(node.left, depth + 1); 
      traverse(node.right, depth + 1); 
     } 
    }; 
    traverse(node, 0); 
    return maxDepth; 
}; 


//Can you write me a function that returns all the averages of the nodes 
//at each level (or depth)?? with breadth-first traversal 


BinarySearchTree.prototype.nodeAverages = function() { 
    var node = this.root; 
    var result = {}; 
    var depthAverages = []; 

    var traverse = function(node, depth) { 
     if (!node) return null; 
     if (node) { 
      if (!result[depth]) 
       result[depth] = [node.value]; 
      else 
       result[depth].push(node.value); 
     } 
     //check to see if node is a leaf, depth stays the same if it is 
     //otherwise increment depth for possible right and left nodes 
     if (node.right || node.left) { 
      traverse(node.left, depth + 1); 
      traverse(node.right, depth + 1); 
     } 
    }; 
    traverse(node, 0); 

    //get averages and breadthFirst 
    for (var key in result) { 
     var len = result[key].length; 
     var depthAvg = 0; 
     for (var i = 0; i < len; i++) { 
      depthAvg += result[key][i]; 
     } 
     depthAverages.push(Number((depthAvg/len).toFixed(2))); 
    } 
    return depthAverages; 
}; 

//Convert a binary search tree to a linked-list in place. 
//In-order depth-first traversal. 
function LinkedList() { 
    this.head = null; 
} 

BinarySearchTree.prototype.convertToLinkedList = function() { 

    var result = []; 
    var node = this.root; 
    if (!node) return null; 

    var traverse = function(node) { 
     node.left && traverse(node.left); 
     result.push(node.value); 
     node.right && traverse(node.right); 
    }; 

    traverse(node); 

    var makeNode = function(value) { 
     var node = {}; 
     node.value = value; 
     node.next = null; 
     return node; 
    }; 

    var list = new LinkedList(); 
    list.head = makeNode(result[0]); 
    var current = list.head; 

    for (var i = 1; i < result.length; i++) { 
     var currentNode = makeNode(result[i]); 
     current.next = currentNode; 
     current = current.next; 
    } 
    return list; 
}; 

//TESTS 

var bst = new BinarySearchTree(); 
bst.add(40).add(25).add(78).add(10).add(32); 
console.log('BS1', bst); 

var bst2 = new BinarySearchTree(); 
bst2.add(10).add(20).add(30).add(5).add(8).add(3).add(9); 
console.log('BST2', bst2); 
console.log('BREADTHFIRST LTR', bst2.breadthFirstLTR()); 
console.log('BREADTHFIRST RTL', bst2.breadthFirstRTL()); 
console.log('PREORDER', bst2.preOrder()); 
console.log('INORDER', bst2.inOrder()); 
console.log('POSTORDER', bst2.postOrder()); 

/* 
BREADTHFIRST LTR [ 10, 5, 20, 3, 8, 30, 9 ] 
BREADTHFIRST RTL [ 10, 20, 5, 30, 8, 3, 9 ] 
PREORDER [ 10, 5, 3, 8, 9, 20, 30 ] 
INORDER [ 3, 5, 8, 9, 10, 20, 30 ] 
POSTORDER [ 3, 9, 8, 5, 30, 20, 10 ] 
*/ 

var bst3 = new BinarySearchTree(); 
bst3.add('j').add('f').add('k').add('z').add('a').add('h').add('d'); 
console.log(bst3); 
console.log('BREADTHFIRST LTR', bst3.breadthFirstLTR()); 
console.log('BREADTHFIRST RTL', bst3.breadthFirstRTL()); 
console.log('PREORDER', bst3.preOrder()); 
console.log('INORDER', bst3.inOrder()); 
console.log('POSTORDER', bst3.postOrder()); 

/* 
BREADTHFIRST LTR [ 'j', 'f', 'k', 'a', 'h', 'z', 'd' ] 
BREADTHFIRST RTL [ 'j', 'k', 'f', 'z', 'h', 'a', 'd' ] 
PREORDER [ 'j', 'f', 'a', 'd', 'h', 'k', 'z' ] 
INORDER [ 'a', 'd', 'f', 'h', 'j', 'k', 'z' ] 
POSTORDER [ 'd', 'a', 'h', 'f', 'z', 'k', 'j' ] 
*/ 


console.log(bst2.findMin()); // 3 
console.log(bst2.findMax()); // 30 
console.log(bst2.contains(15)); 
//bst2.add(55); 
//bst2.add(65); 
//bst3.add(75); 
console.log(bst2); 
console.log(bst2.getDepth()); // 3 
console.log(bst2.add(7).add(50).add(80).add(98)); 
console.log(bst2.getDepth()); // 5 
console.log(bst2.nodeAverages()); //[ 10, 12.5, 13.67, 22, 80, 98 ] 

console.log(bst2.convertToLinkedList()); 
//[ 3, 5, 7, 8, 9, 10, 20, 30, 50, 80, 98 ] 
//{ head: { value: 3, next: { value: 5, next: [Object] } } } 
0

二分探索木は自然の中でソートされている木の特殊なタイプです。バイナリ検索ツリーでは、すべてのノードが左の子よりも大きく、右の子よりも小さい。この機能により、バイナリ検索ツリーからノードを簡単に検索、挿入、削除することができます。

アルゴ

//はい、その後反復しないよりも、場合

//をrootに新しいノードを割り当てるとルートノードは//

空であるかどうか確認してください。 Iterateメソッドは、現在処理中のノードの左右の子から追加するノード値をチェックします。

追加するノード値は、左の子カントーの動きよりもノードよりも低いです//場合

//この左の子ノード

//他のコール反復処理する新しいノードを割り当てるよりも、左の子が空の場合方法

//追加するノードの値が右の子は、この右の子ノードに新しいノードを割り当てるよりも、空である

//場合は右の子への移動よりもノード値よりも大きい場合

//それ以外の通話反復法

このことができます場合は、ここで完全な記事のためにBinary Search Tree Insert node Implementation in Javascript