次のテストを実行すると、「停止したSparkContextでメソッドを呼び出せません」がスローされます。考えられる問題は、TestSuiteBase
とストリーミングスパークコンテキストを使用していることです。ラインでval gridEvalsRDD = ssc.sparkContext.parallelize(gridEvals)
私はssc.sparkContext
経由でアクセスSparkContext
を使用する必要があると私は問題(下記の警告やエラーメッセージを参照)停止したSparkContextのメソッドを呼び出せません
class StreamingTest extends TestSuiteBase with BeforeAndAfter {
test("Test 1") {
//...
val gridEvals = for (initialWeights <- gridParams("initialWeights");
stepSize <- gridParams("stepSize");
numIterations <- gridParams("numIterations")) yield {
val lr = new StreamingLinearRegressionWithSGD()
.setInitialWeights(initialWeights.asInstanceOf[Vector])
.setStepSize(stepSize.asInstanceOf[Double])
.setNumIterations(numIterations.asInstanceOf[Int])
ssc = setupStreams(inputData, (inputDStream: DStream[LabeledPoint]) => {
lr.trainOn(inputDStream)
lr.predictOnValues(inputDStream.map(x => (x.label, x.features)))
})
val output: Seq[Seq[(Double, Double)]] = runStreams(ssc, numBatches, numBatches)
val cvRMSE = calculateRMSE(output, nPoints)
println(s"RMSE = $cvRMSE")
(initialWeights, stepSize, numIterations, cvRMSE)
}
val gridEvalsRDD = ssc.sparkContext.parallelize(gridEvals)
}
}
16/04/27午前10時40分17秒を持っている場所ですWARN StreamingContext:StreamingContextは既に が停止しました16/04/27 10:40:17 INFO SparkContext:SparkContextはすでに が停止しています。
がUPDATE停止SparkContext
に
をメソッドを呼び出すことはできません:それは以前に起こったいくつかのエラーの結果である
trait TestSuiteBase extends SparkFunSuite with BeforeAndAfter with Logging {
// Name of the framework for Spark context
def framework: String = this.getClass.getSimpleName
// Master for Spark context
def master: String = "local[2]"
// Batch duration
def batchDuration: Duration = Seconds(1)
// Directory where the checkpoint data will be saved
lazy val checkpointDir: String = {
val dir = Utils.createTempDir()
logDebug(s"checkpointDir: $dir")
dir.toString
}
// Number of partitions of the input parallel collections created for testing
def numInputPartitions: Int = 2
// Maximum time to wait before the test times out
def maxWaitTimeMillis: Int = 10000
// Whether to use manual clock or not
def useManualClock: Boolean = true
// Whether to actually wait in real time before changing manual clock
def actuallyWait: Boolean = false
// A SparkConf to use in tests. Can be modified before calling setupStreams to configure things.
val conf = new SparkConf()
.setMaster(master)
.setAppName(framework)
// Timeout for use in ScalaTest `eventually` blocks
val eventuallyTimeout: PatienceConfiguration.Timeout = timeout(Span(10, ScalaTestSeconds))
// Default before function for any streaming test suite. Override this
// if you want to add your stuff to "before" (i.e., don't call before { })
def beforeFunction() {
if (useManualClock) {
logInfo("Using manual clock")
conf.set("spark.streaming.clock", "org.apache.spark.util.ManualClock")
} else {
logInfo("Using real clock")
conf.set("spark.streaming.clock", "org.apache.spark.util.SystemClock")
}
}
// Default after function for any streaming test suite. Override this
// if you want to add your stuff to "after" (i.e., don't call after { })
def afterFunction() {
System.clearProperty("spark.streaming.clock")
}
before(beforeFunction)
after(afterFunction)
/**
* Run a block of code with the given StreamingContext and automatically
* stop the context when the block completes or when an exception is thrown.
*/
def withStreamingContext[R](ssc: StreamingContext)(block: StreamingContext => R): R = {
try {
block(ssc)
} finally {
try {
ssc.stop(stopSparkContext = true)
} catch {
case e: Exception =>
logError("Error stopping StreamingContext", e)
}
}
}
/**
* Run a block of code with the given TestServer and automatically
* stop the server when the block completes or when an exception is thrown.
*/
def withTestServer[R](testServer: TestServer)(block: TestServer => R): R = {
try {
block(testServer)
} finally {
try {
testServer.stop()
} catch {
case e: Exception =>
logError("Error stopping TestServer", e)
}
}
}
/**
* Set up required DStreams to test the DStream operation using the two sequences
* of input collections.
*/
def setupStreams[U: ClassTag, V: ClassTag](
input: Seq[Seq[U]],
operation: DStream[U] => DStream[V],
numPartitions: Int = numInputPartitions
): StreamingContext = {
// Create StreamingContext
val ssc = new StreamingContext(conf, batchDuration)
if (checkpointDir != null) {
ssc.checkpoint(checkpointDir)
}
// Setup the stream computation
val inputStream = new TestInputStream(ssc, input, numPartitions)
val operatedStream = operation(inputStream)
val outputStream = new TestOutputStreamWithPartitions(operatedStream,
new ArrayBuffer[Seq[Seq[V]]] with SynchronizedBuffer[Seq[Seq[V]]])
outputStream.register()
ssc
}
/**
* Set up required DStreams to test the binary operation using the sequence
* of input collections.
*/
def setupStreams[U: ClassTag, V: ClassTag, W: ClassTag](
input1: Seq[Seq[U]],
input2: Seq[Seq[V]],
operation: (DStream[U], DStream[V]) => DStream[W]
): StreamingContext = {
// Create StreamingContext
val ssc = new StreamingContext(conf, batchDuration)
if (checkpointDir != null) {
ssc.checkpoint(checkpointDir)
}
// Setup the stream computation
val inputStream1 = new TestInputStream(ssc, input1, numInputPartitions)
val inputStream2 = new TestInputStream(ssc, input2, numInputPartitions)
val operatedStream = operation(inputStream1, inputStream2)
val outputStream = new TestOutputStreamWithPartitions(operatedStream,
new ArrayBuffer[Seq[Seq[W]]] with SynchronizedBuffer[Seq[Seq[W]]])
outputStream.register()
ssc
}
/**
* Runs the streams set up in `ssc` on manual clock for `numBatches` batches and
* returns the collected output. It will wait until `numExpectedOutput` number of
* output data has been collected or timeout (set by `maxWaitTimeMillis`) is reached.
*
* Returns a sequence of items for each RDD.
*/
def runStreams[V: ClassTag](
ssc: StreamingContext,
numBatches: Int,
numExpectedOutput: Int
): Seq[Seq[V]] = {
// Flatten each RDD into a single Seq
runStreamsWithPartitions(ssc, numBatches, numExpectedOutput).map(_.flatten.toSeq)
}
/**
* Runs the streams set up in `ssc` on manual clock for `numBatches` batches and
* returns the collected output. It will wait until `numExpectedOutput` number of
* output data has been collected or timeout (set by `maxWaitTimeMillis`) is reached.
*
* Returns a sequence of RDD's. Each RDD is represented as several sequences of items, each
* representing one partition.
*/
def runStreamsWithPartitions[V: ClassTag](
ssc: StreamingContext,
numBatches: Int,
numExpectedOutput: Int
): Seq[Seq[Seq[V]]] = {
assert(numBatches > 0, "Number of batches to run stream computation is zero")
assert(numExpectedOutput > 0, "Number of expected outputs after " + numBatches + " is zero")
logInfo("numBatches = " + numBatches + ", numExpectedOutput = " + numExpectedOutput)
// Get the output buffer
val outputStream = ssc.graph.getOutputStreams.
filter(_.isInstanceOf[TestOutputStreamWithPartitions[_]]).
head.asInstanceOf[TestOutputStreamWithPartitions[V]]
val output = outputStream.output
try {
// Start computation
ssc.start()
// Advance manual clock
val clock = ssc.scheduler.clock.asInstanceOf[ManualClock]
logInfo("Manual clock before advancing = " + clock.getTimeMillis())
if (actuallyWait) {
for (i <- 1 to numBatches) {
logInfo("Actually waiting for " + batchDuration)
clock.advance(batchDuration.milliseconds)
Thread.sleep(batchDuration.milliseconds)
}
} else {
clock.advance(numBatches * batchDuration.milliseconds)
}
logInfo("Manual clock after advancing = " + clock.getTimeMillis())
// Wait until expected number of output items have been generated
val startTime = System.currentTimeMillis()
while (output.size < numExpectedOutput &&
System.currentTimeMillis() - startTime < maxWaitTimeMillis) {
logInfo("output.size = " + output.size + ", numExpectedOutput = " + numExpectedOutput)
ssc.awaitTerminationOrTimeout(50)
}
val timeTaken = System.currentTimeMillis() - startTime
logInfo("Output generated in " + timeTaken + " milliseconds")
output.foreach(x => logInfo("[" + x.mkString(",") + "]"))
assert(timeTaken < maxWaitTimeMillis, "Operation timed out after " + timeTaken + " ms")
assert(output.size === numExpectedOutput, "Unexpected number of outputs generated")
Thread.sleep(100) // Give some time for the forgetting old RDDs to complete
} finally {
ssc.stop(stopSparkContext = true)
}
output
}
/**
* Verify whether the output values after running a DStream operation
* is same as the expected output values, by comparing the output
* collections either as lists (order matters) or sets (order does not matter)
*/
def verifyOutput[V: ClassTag](
output: Seq[Seq[V]],
expectedOutput: Seq[Seq[V]],
useSet: Boolean
) {
logInfo("--------------------------------")
logInfo("output.size = " + output.size)
logInfo("output")
output.foreach(x => logInfo("[" + x.mkString(",") + "]"))
logInfo("expected output.size = " + expectedOutput.size)
logInfo("expected output")
expectedOutput.foreach(x => logInfo("[" + x.mkString(",") + "]"))
logInfo("--------------------------------")
// Match the output with the expected output
for (i <- 0 until output.size) {
if (useSet) {
assert(
output(i).toSet === expectedOutput(i).toSet,
s"Set comparison failed\n" +
s"Expected output (${expectedOutput.size} items):\n${expectedOutput.mkString("\n")}\n" +
s"Generated output (${output.size} items): ${output.mkString("\n")}"
)
} else {
assert(
output(i).toList === expectedOutput(i).toList,
s"Ordered list comparison failed\n" +
s"Expected output (${expectedOutput.size} items):\n${expectedOutput.mkString("\n")}\n" +
s"Generated output (${output.size} items): ${output.mkString("\n")}"
)
}
}
logInfo("Output verified successfully")
}
/**
* Test unary DStream operation with a list of inputs, with number of
* batches to run same as the number of expected output values
*/
def testOperation[U: ClassTag, V: ClassTag](
input: Seq[Seq[U]],
operation: DStream[U] => DStream[V],
expectedOutput: Seq[Seq[V]],
useSet: Boolean = false
) {
testOperation[U, V](input, operation, expectedOutput, -1, useSet)
}
/**
* Test unary DStream operation with a list of inputs
* @param input Sequence of input collections
* @param operation Binary DStream operation to be applied to the 2 inputs
* @param expectedOutput Sequence of expected output collections
* @param numBatches Number of batches to run the operation for
* @param useSet Compare the output values with the expected output values
* as sets (order matters) or as lists (order does not matter)
*/
def testOperation[U: ClassTag, V: ClassTag](
input: Seq[Seq[U]],
operation: DStream[U] => DStream[V],
expectedOutput: Seq[Seq[V]],
numBatches: Int,
useSet: Boolean
) {
val numBatches_ = if (numBatches > 0) numBatches else expectedOutput.size
withStreamingContext(setupStreams[U, V](input, operation)) { ssc =>
val output = runStreams[V](ssc, numBatches_, expectedOutput.size)
verifyOutput[V](output, expectedOutput, useSet)
}
}
/**
* Test binary DStream operation with two lists of inputs, with number of
* batches to run same as the number of expected output values
*/
def testOperation[U: ClassTag, V: ClassTag, W: ClassTag](
input1: Seq[Seq[U]],
input2: Seq[Seq[V]],
operation: (DStream[U], DStream[V]) => DStream[W],
expectedOutput: Seq[Seq[W]],
useSet: Boolean
) {
testOperation[U, V, W](input1, input2, operation, expectedOutput, -1, useSet)
}
/**
* Test binary DStream operation with two lists of inputs
* @param input1 First sequence of input collections
* @param input2 Second sequence of input collections
* @param operation Binary DStream operation to be applied to the 2 inputs
* @param expectedOutput Sequence of expected output collections
* @param numBatches Number of batches to run the operation for
* @param useSet Compare the output values with the expected output values
* as sets (order matters) or as lists (order does not matter)
*/
def testOperation[U: ClassTag, V: ClassTag, W: ClassTag](
input1: Seq[Seq[U]],
input2: Seq[Seq[V]],
operation: (DStream[U], DStream[V]) => DStream[W],
expectedOutput: Seq[Seq[W]],
numBatches: Int,
useSet: Boolean
) {
val numBatches_ = if (numBatches > 0) numBatches else expectedOutput.size
withStreamingContext(setupStreams[U, V, W](input1, input2, operation)) { ssc =>
val output = runStreams[W](ssc, numBatches_, expectedOutput.size)
verifyOutput[W](output, expectedOutput, useSet)
}
}
}
私は、Sparkのホームディレクトリにログを見つけることができません。 Loggingでコードを実行する必要はありますか? – Klue
あなたはこれを見つけましたか?16/04/27 10:40:17 WARN StreamingContext ....?ちょうど上になります(ターミナルウィンドウによって制限された場合はファイルにリダイレクトできます) – Hlib
私はIntellijIDEAを使用しています。ログをファイルに保存する方法は?ターミナル(>ログ)からプログラムを実行するとかなり明らかですが、IntellijIDEAの場合はどうしたらいいですか?初心者の質問に申し訳ありません... – Klue