私は、単純なグラフの問題で動作するようにSparkを使用しようとしました。私はSparkのソースフォルダーにtransitive_closure.pyというサンプルプログラムを見つけました。transitive_closure.pyは、200以上のエッジと頂点を持たないグラフ内の推移閉包を計算します。しかし、自分のラップトップでは、10分以上実行され、終了しません。私が使用するコマンドラインは:spark-submit transitive_closure.pyです。Sparkサンプルプログラムが非常に遅く実行されます
このような小さな推移閉包結果を計算しても、なぜスパークが遅いのだろうと思いますか?それは一般的なケースですか?私が見逃す構成はありますか?
プログラムは以下のとおりで、ウェブサイトのspark installフォルダにあります。
from __future__ import print_function
import sys
from random import Random
from pyspark import SparkContext
numEdges = 200
numVertices = 100
rand = Random(42)
def generateGraph():
edges = set()
while len(edges) < numEdges:
src = rand.randrange(0, numEdges)
dst = rand.randrange(0, numEdges)
if src != dst:
edges.add((src, dst))
return edges
if __name__ == "__main__":
"""
Usage: transitive_closure [partitions]
"""
sc = SparkContext(appName="PythonTransitiveClosure")
partitions = int(sys.argv[1]) if len(sys.argv) > 1 else 2
tc = sc.parallelize(generateGraph(), partitions).cache()
# Linear transitive closure: each round grows paths by one edge,
# by joining the graph's edges with the already-discovered paths.
# e.g. join the path (y, z) from the TC with the edge (x, y) from
# the graph to obtain the path (x, z).
# Because join() joins on keys, the edges are stored in reversed order.
edges = tc.map(lambda x_y: (x_y[1], x_y[0]))
oldCount = 0
nextCount = tc.count()
while True:
oldCount = nextCount
# Perform the join, obtaining an RDD of (y, (z, x)) pairs,
# then project the result to obtain the new (x, z) paths.
new_edges = tc.join(edges).map(lambda __a_b: (__a_b[1][1], __a_b[1][0]))
tc = tc.union(new_edges).distinct().cache()
nextCount = tc.count()
if nextCount == oldCount:
break
print("TC has %i edges" % tc.count())
sc.stop()
ありがとうございます。本当に役に立ちました。もう一つ質問があります。お手伝いできれば、とても感謝しています。結合ポイント、選択、結合、更新などのような多くの関係演算をループ内で使用するプログラムがあるとします。合計タプル数が50以下であっても、2回目の繰り返しとJavaヒープサイズの例外が発生しました。私はすべてのデータフレーム操作でcache()とcoalesce(1)を使用しました。あなたは何が問題だと思いますか? – c21