-1
私はこの質問が既に尋ねられていることを知っていますが、これは異なっています。私は螺旋数の2次元配列と素数のベクトルを生成しています。このプログラムの目標は、スパイラル数配列の対角上の素数の比を求めることです。私は両方の配列をテストして、うまく動作します。私は渦巻きの数字を見るために小さな値のGのために2次元配列を印刷しました、そして、それは働いています。私は理解していないことは、私はNの値を選択するとき以上8000この問題は、巨大なグローバルの使用によって引き起こされる"エラー193%1は有効なwin32アプリケーションではありません"
#include <iostream>
#include <iomanip>
#include <cmath>
#include <vector>
//Error 193 %1 is not a viable win32 app
constexpr unsigned long long N = 7800; //for values of N above 8000??
constexpr unsigned long long G = 2*N + 1;
static unsigned long long arr[G][G];
//we only need primes up to G
constexpr unsigned long long P_LIMIT = 50000;//more than enough
std::vector < unsigned long long > prime(P_LIMIT);
void generate_primes (void)
{
prime[0] = 2, prime[1] = 3, prime[2] = 5;
unsigned long long index = 3;
unsigned long long p;
for (p = 7; index < 50000; p += 2)
{
int isPrime = 1;
unsigned long long test_limit = (unsigned long long) sqrt(p);
for (unsigned long long i = 1; prime[i] <= test_limit; i++)
{
if (p % prime[i] == 0)
{
isPrime = 0;
break;
}
}
if(isPrime) prime[index++] = p;
}
}
void fill_spiral (void){
unsigned long long i = 0, j = 2*N, k, n = G, l;
for (l = 1; l <= N; l++)
{
arr[i][j] = n*n;
arr[i][i] = arr[i][j] - n + 1;
arr[j][i] = arr[i][j] - 2*n + 2;
arr[j][j] = arr[i][j] - 3*n + 3;
for (k = i+1; k < j; k++)
{
arr[i][k] = arr[i][k-1] + 1;
arr[j][k] = arr[j][k-1] - 1;
arr[k][i] = arr[k-1][i] - 1;
}
for (k = j-1; k > i; k--)
{
arr[k][j] = arr[k+1][j] - 1;
}
++i, --j, n -= 2;
}
}
//diagonals of arr[G][G]
int prime_ratio (void)
{
unsigned long long count = 0;
double ratio = 0.62;
unsigned long long side = 3, d = 2.0*side - 1;
for (unsigned long long i = 1; i <= N; i++)
{
unsigned long long test = sqrt(arr[N+i][N+i]);
int isPrime = 1;
for (unsigned long long index = 0; prime[index] <= test; index++)
{
if (arr[N+i][N+i] % prime[index] == 0)
{
isPrime = 0;
break;
}
}
if (isPrime) ++count;
test = sqrt(arr[N+i][N-i]), isPrime = 1;
for (unsigned long long index = 0; prime[index] <= test; index++)
{
if (arr[N+i][N-i] % prime[index] == 0)
{
isPrime = 0;
break;
}
}
if (isPrime) ++count;
test = sqrt(arr[N-i][N+i]), isPrime = 1;
for (unsigned long long index = 0; prime[index] <= test; index++)
{
if (arr[N-i][N+i] % prime[index] == 0)
{
isPrime = 0;
break;
}
}
if (isPrime) ++count;
test = sqrt(arr[N-i][N-i]), isPrime = 1;
for (unsigned long long index = 0; prime[index] <= test; index++)
{
if (arr[N-i][N-i] % prime[index] == 0)
{
isPrime = 0;
break;
}
}
if (isPrime) ++count;
ratio = (double) count/d;
std::cout << std::setprecision(15) <<ratio<< "\t" <<side<<std::endl;
side += 2, d = 2*side - 1;
}
//std::cout << side << std::endl;
return 0;
}
int main (void)
{
std::cout << "generating primes..." << '\n';
generate_primes();
arr[N][N] = 1;
std::cout<< "generating spiral numbers array..." << '\n';
fill_spiral();
std::cout<< "solving ratio problem..." << '\n';
prime_ratio();
return 0;
}