を行うための一つの方法は、ここでベクトル化されたアプローチだですNumPy broadcasting
使用して -
idx = np.arange(n)[::-1] + np.arange(len(s))[:,None] - n + 1
out = s.get_values()[idx]
out[idx<0] = np.nan
する。これはあなたの出力としてを取得します2D配列。あなたは1次元配列の分割アレイのリストを持っているしたい場合、あなたは、出力にnp.split
を使用することができますので、のような -
out_split = np.split(out,out.shape[0],axis=0)
サンプルの実行 -
In [100]: s
Out[100]:
1 1.0
2 1.1
3 1.2
4 1.3
5 1.4
dtype: float64
In [101]: n = 3
In [102]: idx = np.arange(n)[::-1] + np.arange(len(s))[:,None] - n + 1
...: out = s.get_values()[idx]
...: out[idx<0] = np.nan
...:
In [103]: out
Out[103]:
array([[ 1. , nan, nan],
[ 1.1, 1. , nan],
[ 1.2, 1.1, 1. ],
[ 1.3, 1.2, 1.1],
[ 1.4, 1.3, 1.2]])
In [104]: np.split(out,out.shape[0],axis=0)
Out[104]:
[array([[ 1., nan, nan]]),
array([[ 1.1, 1. , nan]]),
array([[ 1.2, 1.1, 1. ]]),
array([[ 1.3, 1.2, 1.1]]),
array([[ 1.4, 1.3, 1.2]])]