0
ニューラルネットワークの開始v3とTensorflowのテストでエラーが発生しました。ニューラルネットワークの開始v3でラベルが作成されない
私は、Pythonでこの方法をavtivatedし、モデルを訓練された:私は、次のエラーました
source tf_files/tensorflow/bin/activate
python tf_files/tensorflow/examples/image_retraining/retrain.py --bottleneck_dir=tf_files/bottlenecks --how_many_training_steps 500 --model_dir=tf_files/inception --output_graph=tf_files/retrained_graph.pb --output_labels=tf_files/retrained_labels.txt --image_dir tf_files/data
:
CRITICAL:tensorflow:Label kiwi has no images in the category testing.
Kiwi
は、画像を含むフォルダです。他のフォルダApples
は私にエラーを与えませんでした。しかし、20枚以下の画像が含まれている可能性があります。また、retrained_labels.txt
というファイルは作成されません。
したがって、次のコマンドを実行すると、上記のファイルが見つからないというエラーが表示されます。
python image_label.py apple.jpg
すべてがそれのフォルダ内にあり、image_label.py
の内容は次のとおりです。
import tensorflow as tf
import sys
# change this as you see fit
image_path = sys.argv[1]
# Read in the image_data
image_data = tf.gfile.FastGFile(image_path, 'rb').read()
# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
in tf.gfile.GFile("tf_files/retrained_labels.txt")]
# Unpersists graph from file
with tf.gfile.FastGFile("tf_files/retrained_graph.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg/contents:0': image_data})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
print('%s (score = %.5f)' % (human_string, score))
オリジナルの質問に回答してもよいですか? –