私は以下のクエリが必要ですが、スローは遅いです。指定された期間内に返されます(たとえば、2017-05-01 00:00:00と2017-05-01 01:00:00の間ではありますが、1秒から数日の間の何秒でもかまいません)。最初と最後のレコード(例として15秒ですが、1秒から数日の間であれば何でも構いません)。CTEクエリのパフォーマンスの改善(postgres 9.6)
これはめったに遅くありません。たとえば、期間2017-05-01 00:00:00〜2017-05-01 00:00:01の1秒間隔の場合、i7 7700HQで6秒間実行されます。 2017-05-01 00:00:00〜2017-05-01 00:00:05私は結果を見たことがない!データベースには現在約60億行があります。生産量は10億となり、毎月約50百万が追加されます。
QUERY:
WITH ranges as (
SELECT dd as start_range,
dd + '15 seconds'::interval as end_range,
ROW_NUMBER() over() as grp
FROM generate_series
('2017-05-01 00:00:00'::timestamp
, '2017-05-01 01:00:00'::timestamp
, '15 seconds'::interval) dd
), create_grp as (
SELECT r.grp, r.start_range, r.end_range, p.*
FROM prices p
JOIN ranges r
ON p.dt >= r.start_range
AND p.dt < r.end_range
WHERE instrument='EURGBP'
), minmax as (
SELECT row_number() over (partition by grp
order by dt asc) as rn1,
row_number() over (partition by grp
order by dt desc) as rn2,
create_grp.*
FROM create_grp
)
SELECT *,
CASE WHEN rn1 = 1 and rn2 = 1 THEN 'first and last'
WHEN rn1 = 1 THEN 'first'
WHEN rn2 = 1 THEN 'last'
END as row_position
FROM minmax
WHERE
1 IN (rn1, rn2)
ORDER BY dt
;
SCHEMA:
CREATE TABLE public.prices
(
uid uuid NOT NULL DEFAULT uuid_generate_v4(),
instrument character varying COLLATE pg_catalog."default" NOT NULL,
bid double precision NOT NULL,
ask double precision NOT NULL,
dt timestamp without time zone NOT NULL DEFAULT now(),
CONSTRAINT prices_pkey PRIMARY KEY (uid)
)
WITH (
OIDS = FALSE
)
TABLESPACE pg_default;
INDEXES:
CREATE INDEX idx_dt_instrument
ON public.prices USING btree
(dt, instrument COLLATE pg_catalog."default")
TABLESPACE pg_default;
CREATE INDEX idx_dt_instrument_bid_ask
ON public.prices USING btree
(dt, instrument COLLATE pg_catalog."default", bid, ask)
TABLESPACE pg_default;
CREATE INDEX idx_instrument
ON public.prices USING btree
(instrument COLLATE pg_catalog."default")
TABLESPACE pg_default;
2017年5月1日0時00分00秒から見つめ5秒間実施例のデータセット:
"uid","instrument","bid","ask","dt"
"4ecaa607-3733-4aba-9093-abc8f59e1638","EURGBP","0.84331","0.8434","2017-05-01 00:00:00.031"
"d1a41847-4945-4cf4-a45f-781db977ae07","GBPJPY","143.949005","143.970993","2017-05-01 00:00:00.031"
"34972c12-899b-404a-b0de-bae0fd3f6733","GBPJPY","143.947998","143.970993","2017-05-01 00:00:00.056"
"384b8246-3eac-4826-b6d2-d6caaa364f81","GBPUSD","1.29311","1.29323","2017-05-01 00:00:00.066"
"d879b04d-a4ed-452e-9208-7dfff672e860","GBPJPY","143.947006","143.970993","2017-05-01 00:00:00.067"
"a9e735ec-30d9-4c9a-a28e-5e5553273372","GBPJPY","143.945999","143.970993","2017-05-01 00:00:00.079"
"ee40ee5f-d8ac-41ce-9f39-ae50ef15d02d","GBPJPY","143.947006","143.964005","2017-05-01 00:00:00.091"
"7b605c3b-121f-46c2-a3e4-297d187f0a28","GBPJPY","143.947006","143.968994","2017-05-01 00:00:00.115"
"ccb307b0-7fa3-4354-8707-1426eded49e8","GBPJPY","143.942001","143.968994","2017-05-01 00:00:00.205"
"206c339d-bc36-469d-82d1-c7ae74002f44","EURGBP","0.84332","0.8434","2017-05-01 00:00:00.206"
"bc581318-91c7-4c80-85e0-e06f7236b277","GBPJPY","143.944","143.968994","2017-05-01 00:00:00.206"
"1fabf850-9045-4beb-81ae-bfa3adada62e","GBPUSD","1.29311","1.29324","2017-05-01 00:00:00.208"
"06d40f9a-a47e-466d-aebf-97a0154bdc74","GBPJPY","143.942001","143.968994","2017-05-01 00:00:00.209"
"b3b7fac9-340f-4e3b-8946-7bdecc383191","GBPUSD","1.29311","1.29327","2017-05-01 00:00:00.211"
"b5c28955-b40f-446f-9f43-9d5e9f145c1b","EURGBP","0.84331","0.8434","2017-05-01 00:00:00.212"
"192a40d6-8001-42ea-9430-96e800f2d4e8","GBPJPY","143.942993","143.968994","2017-05-01 00:00:00.212"
"e98dbba7-8231-4fa3-926b-291eb22b0f87","GBPJPY","143.944","143.968994","2017-05-01 00:00:00.215"
"7c6e952d-d01f-4dac-a1df-6b32168246fd","GBPUSD","1.29311","1.29326","2017-05-01 00:00:00.216"
"c86ba29f-3edb-4147-ba99-d9dfe594b0ff","GBPUSD","1.29312","1.29327","2017-05-01 00:00:00.243"
"35ca131e-b714-462d-827f-b5bc593aa3e6","GBPJPY","143.942993","143.968994","2017-05-01 00:00:00.262"
"91fc6fc0-7af9-4036-8e0e-29d4a3bb3e43","EURGBP","0.8433","0.8434","2017-05-01 00:00:00.283"
"e71946e0-1859-461a-b3eb-0539584ac4dc","GBPJPY","143.944","143.968994","2017-05-01 00:00:00.296"
"7321eea8-2610-408b-8dbf-4087f01e8c6e","GBPJPY","143.947998","143.968994","2017-05-01 00:00:00.377"
"f146716d-cadf-4e2f-9f17-6e7e8c5f2175","GBPUSD","1.29312","1.29327","2017-05-01 00:00:00.38"
"b3d81295-8cd5-44e7-879c-f15476ffac21","GBPUSD","1.29312","1.29326","2017-05-01 00:00:00.391"
"c037e27b-a8f4-4ec3-8472-b0f72a58fd33","EURGBP","0.8433","0.8434","2017-05-01 00:00:00.413"
"dba0f8f5-f218-49ea-8ebf-132f3ecf8910","GBPJPY","143.947998","143.968994","2017-05-01 00:00:00.443"
"a08449e3-44aa-4fed-b8e9-bf1a6bfc35c5","EURGBP","0.8433","0.84339","2017-05-01 00:00:00.585"
"a0b7ba20-653f-46db-93e9-d1edd8972dba","GBPUSD","1.29312","1.29326","2017-05-01 00:00:00.588"
"c2855ce8-8c5b-4de7-a92b-186d928e8f31","GBPJPY","143.947998","143.968994","2017-05-01 00:00:00.591"
"01b19a70-3ce7-44c7-9abd-9945321fdfd0","EURGBP","0.8433","0.84339","2017-05-01 00:00:00.621"
"4518aa9d-1f76-428e-ace4-7dcffeb6aa22","GBPJPY","143.947998","143.968994","2017-05-01 00:00:00.796"
"e4d4bac4-dd02-4da3-b231-20bfa6424412","EURGBP","0.8433","0.84339","2017-05-01 00:00:00.907"
"e48d3721-3157-4033-bd4f-09baae0f989c","GBPUSD","1.29312","1.29326","2017-05-01 00:00:00.909"
"64a33b2d-c756-4a0a-823e-075143ae7263","GBPJPY","143.947998","143.968994","2017-05-01 00:00:00.913"
"e477c47d-efd1-44dd-8058-cac17e08bc5d","GBPUSD","1.29314","1.29327","2017-05-01 00:00:00.914"
"cf6d5341-f7fd-47bc-89f6-a5448f78fb99","EURGBP","0.84329","0.84339","2017-05-01 00:00:00.943"
"4caa8bb9-094e-48ca-8a9a-7b2dd23a4fb4","GBPJPY","143.947006","143.968994","2017-05-01 00:00:00.967"
"274b7f51-3b07-430d-bfc5-a0b1ce62a750","GBPUSD","1.29312","1.29327","2017-05-01 00:00:00.975"
"2e3c2cd6-2525-46b3-86c5-b88e48bb0138","GBPJPY","143.947998","143.968994","2017-05-01 00:00:01.076"
"bcb12b90-2795-4789-bfa2-8e9a494eaeb1","GBPUSD","1.29312","1.29326","2017-05-01 00:00:01.076"
"d63d6037-fa81-47cc-bd62-4655850c0f80","GBPUSD","1.29312","1.29327","2017-05-01 00:00:01.077"
"6dbf8d8e-37c8-4537-80b5-c9219f4356b1","EURGBP","0.8433","0.84339","2017-05-01 00:00:01.079"
"7e3b6eaf-22e1-4f87-a7c1-226d3ee76146","EURGBP","0.84329","0.84339","2017-05-01 00:00:01.08"
"63e451c5-b8c6-4b57-ac9e-2171bc1dfbfa","GBPJPY","143.947998","143.968994","2017-05-01 00:00:01.121"
"866316e7-90a2-4c80-9a38-b3a062837415","GBPJPY","143.949005","143.968994","2017-05-01 00:00:01.143"
"fb11e963-cd36-4cfc-89b3-1bba3b8595b5","GBPUSD","1.29312","1.29327","2017-05-01 00:00:01.156"
"ad57e34f-5cbe-4b79-8579-b2c77c83b50b","EURGBP","0.84329","0.84339","2017-05-01 00:00:01.249"
"46b1840e-e424-41c2-8c71-691b201183ab","GBPJPY","143.949005","143.968994","2017-05-01 00:00:01.259"
"c5fa5e09-46df-4ea4-8640-9cf18e1f8fcc","GBPUSD","1.29312","1.29327","2017-05-01 00:00:01.265"
"926d092d-601e-43ec-b398-3300b0345cfd","GBPJPY","143.949997","143.968994","2017-05-01 00:00:01.267"
"4ddfbc84-20a1-4281-86c2-f0a4e77d0152","EURGBP","0.84329","0.84339","2017-05-01 00:00:01.305"
"e75af139-51a2-4a0a-acc8-e0adfbe5472a","GBPUSD","1.29313","1.29327","2017-05-01 00:00:01.346"
"408bca2d-2d57-471b-b6a7-819a3257741f","GBPJPY","143.951004","143.968994","2017-05-01 00:00:01.348"
"53c6f444-bd76-4a28-a370-7af98d5fa9ec","GBPUSD","1.29313","1.29326","2017-05-01 00:00:01.359"
"cd002ef4-925e-469b-8f2f-848cadd5943f","EURGBP","0.84329","0.84339","2017-05-01 00:00:01.443"
"13587e44-b694-4ce9-a626-e592d28c507d","EURGBP","0.8433","0.84339","2017-05-01 00:00:01.45"
"aabbacaf-3f09-4313-b992-e8b8d91df7ad","GBPJPY","143.951004","143.968994","2017-05-01 00:00:01.461"
"6b2111ef-c285-4482-b93c-238f27522ca3","GBPUSD","1.29313","1.29326","2017-05-01 00:00:01.477"
"19507f29-149c-4fdf-a1fa-aac312ab8479","EURGBP","0.8433","0.84338","2017-05-01 00:00:01.506"
"916cc759-a536-449d-b825-8203ebea9bf8","GBPJPY","143.949997","143.968994","2017-05-01 00:00:01.649"
"1fdd2b35-fd44-4dbb-81df-b98514af7004","GBPUSD","1.29313","1.29326","2017-05-01 00:00:01.649"
"3e9fc214-3cc6-4991-9eb3-2f5a5e557e96","GBPUSD","1.29312","1.29326","2017-05-01 00:00:01.65"
"5da9a29b-0d8a-42b1-98b6-f89dd2893c77","EURGBP","0.8433","0.84338","2017-05-01 00:00:01.651"
"b87f85e3-fba5-4556-8ca5-52625d978d53","EURGBP","0.84329","0.84338","2017-05-01 00:00:01.652"
"75b7624c-b90c-40d4-a7fc-09df7da9f659","GBPJPY","143.949997","143.968994","2017-05-01 00:00:01.715"
"b076534f-b893-4b55-9d9a-e3bac6e77ab2","GBPUSD","1.29312","1.29325","2017-05-01 00:00:01.732"
"6464da85-9eb5-4548-bd5e-3331a69f2121","EURGBP","0.84329","0.84338","2017-05-01 00:00:01.817"
"f9937464-e36a-4c57-a212-2f32943307d3","EURGBP","0.8433","0.84338","2017-05-01 00:00:01.83"
"1c7848e5-c101-4a50-87fe-1f5e980dbb95","GBPJPY","143.949005","143.968994","2017-05-01 00:00:01.83"
"30ad5bfc-f968-4b49-9b22-80c12e801f37","GBPUSD","1.29312","1.29325","2017-05-01 00:00:01.847"
"94eb4b51-4901-4e56-873a-05f93ef35e64","EURGBP","0.8433","0.84338","2017-05-01 00:00:02.007"
"97ef7e05-0a2f-4d70-80d1-1d3c748ea70f","GBPJPY","143.949005","143.968994","2017-05-01 00:00:02.007"
"af9274d9-02d6-43fc-9336-c3f512e4bd78","GBPUSD","1.29312","1.29325","2017-05-01 00:00:02.008"
"78c12ba8-992a-469e-bdda-bef004596aa1","GBPUSD","1.29311","1.29325","2017-05-01 00:00:02.062"
"4e1e31a9-bfdc-4f56-b8e1-0c7e83852fe0","GBPUSD","1.29311","1.29324","2017-05-01 00:00:02.071"
"e4f1c459-f75b-4005-8dd1-00c572ded4f9","GBPUSD","1.29311","1.29324","2017-05-01 00:00:02.203"
"2c8b38ce-50de-43e7-ba63-b6d1d7a7f76c","GBPJPY","143.947998","143.968994","2017-05-01 00:00:02.244"
"438f4439-a259-421f-8f45-a0dc88d80e1d","GBPJPY","143.949997","143.968994","2017-05-01 00:00:02.257"
"f12b7e18-84f0-4686-9588-0ecfab8f8bf8","GBPUSD","1.29311","1.29324","2017-05-01 00:00:02.301"
"f335ee32-cd5e-4cd2-aabe-06c14985778f","GBPJPY","143.949997","143.968994","2017-05-01 00:00:02.394"
"3c55786e-f9b8-424b-9c32-0b4b432a553f","EURGBP","0.8433","0.84338","2017-05-01 00:00:02.404"
"53c3e013-b016-41bb-a3ed-48158640831a","GBPUSD","1.29311","1.29324","2017-05-01 00:00:02.417"
"a944e2b6-3700-4ecd-994d-cb5ab97cf5ad","EURGBP","0.8433","0.84339","2017-05-01 00:00:02.508"
"ab32781d-1502-4047-b320-c3f4cda389fd","GBPJPY","143.949997","143.968994","2017-05-01 00:00:02.605"
"24759950-e095-4bb7-be3d-fda725423589","EURGBP","0.84329","0.84339","2017-05-01 00:00:02.625"
"cd7940d9-8a30-4a12-9dc9-a2c710cbb982","GBPUSD","1.29311","1.29325","2017-05-01 00:00:02.649"
"233e0a3d-eeae-403f-b512-2add055d6735","GBPJPY","143.949997","143.968994","2017-05-01 00:00:02.761"
"58c7c33c-75b2-45bd-a50c-615d9eaaec07","EURGBP","0.84329","0.84339","2017-05-01 00:00:02.763"
"675b2847-b0f9-44f1-ab75-d6ddafbddfd5","GBPUSD","1.29311","1.29325","2017-05-01 00:00:02.766"
"d2946714-e84c-4a36-9819-0cca4f2dd197","EURGBP","0.8433","0.84339","2017-05-01 00:00:02.81"
"5322418b-4c45-4771-b591-cc8fea167424","GBPJPY","143.949997","143.968994","2017-05-01 00:00:02.832"
"9a1c572e-28b9-4d16-b196-ccef3e48f602","EURGBP","0.84331","0.84339","2017-05-01 00:00:02.929"
"a4377169-5400-4dd6-81f0-8b455d178b65","EURGBP","0.8433","0.84339","2017-05-01 00:00:02.951"
"37cdddb0-db5e-4574-bf4d-45fb8d52c6be","GBPUSD","1.29311","1.29325","2017-05-01 00:00:02.951"
"1258c886-b797-43ed-9886-323daac83dde","GBPUSD","1.29311","1.29325","2017-05-01 00:00:02.999"
"453406c3-5902-4dab-b39c-2e0b85739767","EURGBP","0.8433","0.84339","2017-05-01 00:00:03.005"
"95699a6d-8412-4f2f-9dd4-86a1d3eed57d","GBPUSD","1.29312","1.29325","2017-05-01 00:00:03.129"
"2268fcc4-104e-434b-8237-bce765bda084","EURGBP","0.8433","0.84339","2017-05-01 00:00:03.131"
"ba771b59-b04c-4683-8ceb-8e9b8451bcc7","GBPUSD","1.29312","1.29325","2017-05-01 00:00:03.17"
"00541afa-79a6-4d09-8c6e-4d59e8d15bb2","GBPJPY","143.947006","143.968994","2017-05-01 00:00:03.216"
"b4dd6e15-0e25-4da1-b210-021b91e4245a","GBPUSD","1.29312","1.29325","2017-05-01 00:00:03.323"
"79b11513-97c5-4146-a4c8-7daf7d8ffe6f","GBPJPY","143.947006","143.966995","2017-05-01 00:00:03.324"
"c5283502-eb09-45d3-b92b-d5625de9e9fc","GBPJPY","143.947006","143.966003","2017-05-01 00:00:03.411"
"67715855-9171-4ae7-b205-5ba017d328f2","EURGBP","0.8433","0.84339","2017-05-01 00:00:03.501"
"00b7647e-7d53-407d-9704-78a8712ac580","GBPJPY","143.947006","143.966003","2017-05-01 00:00:03.525"
"b41b5483-5fb2-4c57-9892-0d02e5e6a823","GBPJPY","143.947998","143.966003","2017-05-01 00:00:03.549"
"881712b2-ff9a-4065-ad6a-9caee03283e3","GBPJPY","143.947998","143.964996","2017-05-01 00:00:03.56"
"7248bc13-5a9f-4fba-97a1-fe041e975c38","EURGBP","0.8433","0.84339","2017-05-01 00:00:03.581"
"0379b4bb-7691-48e8-a668-2388f6e5d510","GBPJPY","143.947998","143.964996","2017-05-01 00:00:03.672"
"2715fe9a-eb6f-445d-b7d0-850293bb5b2e","GBPJPY","143.947006","143.964996","2017-05-01 00:00:03.698"
"52ce7685-0964-46e4-ab8f-282e68bdb73d","GBPJPY","143.947006","143.964005","2017-05-01 00:00:03.711"
"6b31dee4-1aec-4d10-9b37-0c58bae7e449","GBPJPY","143.947006","143.964005","2017-05-01 00:00:03.848"
"7e61571a-ea8b-44cb-9481-ae31ba8b86c4","GBPUSD","1.29312","1.29325","2017-05-01 00:00:03.868"
"89e316cb-e01d-4f01-9dcd-a380e94ed4e8","GBPJPY","143.947006","143.964005","2017-05-01 00:00:03.943"
"966318e4-a6b5-4c1b-82e1-fbbf0029ce02","GBPUSD","1.29312","1.29325","2017-05-01 00:00:04.096"
"8fc7b075-7f5e-40f5-9879-55604f77a3c5","EURGBP","0.8433","0.84339","2017-05-01 00:00:04.227"
"23ab8b66-337e-4c4e-b73a-f31101716565","GBPJPY","143.947006","143.964005","2017-05-01 00:00:04.227"
"eb7469be-8a40-4498-af85-7b2c42630149","GBPJPY","143.947006","143.964005","2017-05-01 00:00:04.288"
"f945a821-9790-4760-beea-1b54bb1c2a85","EURGBP","0.8433","0.84339","2017-05-01 00:00:04.406"
"978c6d4c-22f9-4218-b447-940a3d3c436e","EURGBP","0.8433","0.84339","2017-05-01 00:00:04.505"
"2ace7d77-b228-491c-9cf0-610b8e48cdf7","GBPJPY","143.947006","143.966003","2017-05-01 00:00:04.786"
"0f89d5dd-52f2-44e9-aa54-cbb423cd7416","GBPJPY","143.947006","143.964996","2017-05-01 00:00:04.787"
"db7748a8-317b-4c62-a1f2-d6679430b343","GBPUSD","1.29312","1.29325","2017-05-01 00:00:04.895"
"ae29728e-773b-42a9-9f1e-199ba996731a","EURGBP","0.8433","0.84339","2017-05-01 00:00:04.986"
"19ffa8e4-63c5-4f47-90d5-771dd5a839ba","GBPJPY","143.947006","143.962997","2017-05-01 00:00:04.986"
減速は「WHERE instrument = 'EURGBP'」によって引き起こされます。私はそれを削除するとすぐにクエリが飛ぶ。しかし、私は '楽器'でフィルタリングする必要があります。
は、OUTPUTをEXPLAIN:
Sort (cost=2356660289.95..2356711257.16 rows=20386886 width=144)
Sort Key: minmax.dt
CTE ranges
-> WindowAgg (cost=0.00..25.00 rows=1000 width=24)
-> Function Scan on generate_series dd (cost=0.00..10.00 rows=1000 width=8)
CTE create_grp
-> Nested Loop (cost=344299.48..460976348.77 rows=2043798111 width=71)
Join Filter: ((p.dt >= r.start_range) AND (p.dt < r.end_range))
-> Bitmap Heap Scan on prices p (cost=344299.48..1121763.77 rows=18394183 width=47)
Recheck Cond: ((instrument)::text = 'EURGBP'::text)
-> Bitmap Index Scan on idx_instrument (cost=0.00..339700.94 rows=18394183 width=0)
Index Cond: ((instrument)::text = 'EURGBP'::text)
-> CTE Scan on ranges r (cost=0.00..20.00 rows=1000 width=24)
CTE minmax
-> WindowAgg (cost=1796644092.85..1837520055.07 rows=2043798111 width=112)
-> Sort (cost=1796644092.85..1801753588.13 rows=2043798111 width=104)
Sort Key: create_grp.grp, create_grp.dt DESC
-> WindowAgg (cost=880857947.67..921733909.89 rows=2043798111 width=104)
-> Sort (cost=880857947.67..885967442.95 rows=2043798111 width=96)
Sort Key: create_grp.grp, create_grp.dt
-> CTE Scan on create_grp (cost=0.00..40875962.22 rows=2043798111 width=96)
-> CTE Scan on minmax (cost=0.00..51298821.64 rows=20386886 width=144)
Filter: ((1 = rn1) OR (1 = rn2))
それを最適化するための任意の提案は非常に非常に歓迎されています。
'EXPLAIN'は、WHERE句のインデックスが使用されていることを示していますか? –
あなたは既に元の質問に反応していると言われました。つまり、CTEと*参加するインデックスが不足しているgenerate_series()や使用可能な統計のどちらも*ゆっくり*クエリが遅いです。 IOW:それらを具体化する。 (WHERE instrument = 'EURGBP''条件は、**最も強い**ヒントであり、プランナーがその心を払拭する原因となります) – wildplasser
私はSQLの全体を初めて使いました。ここで何らかの方法でTemp Tableを使用できますか? 「実現する」とはどういう意味ですか?どのようにそれらを具体化するのですか? – uzla