8
私はスパークデータフレームに日付でグループにしようとすると、グループごとに1列の一意の値カウントてるスパーク上の他のフィールドで、各グループの異なる要素を取得します:1.6データフレーム
test.json
{"name":"Yin", "address":1111111, "date":20151122045510}
{"name":"Yin", "address":1111111, "date":20151122045501}
{"name":"Yln", "address":1111111, "date":20151122045500}
{"name":"Yun", "address":1111112, "date":20151122065832}
{"name":"Yan", "address":1111113, "date":20160101003221}
{"name":"Yin", "address":1111111, "date":20160703045231}
{"name":"Yin", "address":1111114, "date":20150419134543}
{"name":"Yen", "address":1111115, "date":20151123174302}
をとコード:pysparkと
import pyspark.sql.funcions as func
from pyspark.sql.types import TimestampType
from datetime import datetime
df_y = sqlContext.read.json("/user/test.json")
udf_dt = func.udf(lambda x: datetime.strptime(x, '%Y%m%d%H%M%S'), TimestampType())
df = df_y.withColumn('datetime', udf_dt(df_y.date))
df_g = df_y.groupby(func.hour(df_y.date))
df_g.count().distinct().show()
結果は
df_y.groupby(df_y.name).count().distinct().show()
+----+-----+
|name|count|
+----+-----+
| Yan| 1|
| Yun| 1|
| Yin| 4|
| Yen| 1|
| Yln| 1|
+----+-----+
そして、私は期待していようなものですされていますこれはパンダで:
df = df_y.toPandas()
df.groupby('name').address.nunique()
Out[51]:
name
Yan 1
Yen 1
Yin 2
Yln 1
Yun 1
各グループの固有の要素は、アドレスなどの別のフィールドでどのように取得できますか?