スパークストリーミングジョブ(spark 1.6.1、kafka 0.9.0)が20個のパーティションでKafkaトピックから消費されています。 オラクルDBでオフセットが維持されています。ArrayBufferでスパークストリーミングジョブが失敗する(kafka.common.NotLeaderForPartitionException)
ジョブの起動時に、私はOracleからのオフセットを読み取り(1回読み込み)、処理後にオラクルにオフセットを書き込みます。
私の仕事は正常に8時間実行され、その後、以下の理由で失敗しました。障害発生時にカフカ・トピック、スパーク・プログラム、オラクル・コードに変更はありません。
実行中のスパークストリーミングジョブでこのエラーが発生する理由は誰にも分かりますか?
16/11/02 08:09:21 ERROR JobScheduler: Error generating jobs for time 1478074160000 ms
org.apache.spark.SparkException: ArrayBuffer(kafka.common.NotLeaderForPartitionException, org.apache.spark.SparkException: Couldn't find leader offsets for Set([MyTopic,11]))
at org.apache.spark.streaming.kafka.DirectKafkaInputDStream.latestLeaderOffsets(DirectKafkaInputDStream.scala:123)
at org.apache.spark.streaming.kafka.DirectKafkaInputDStream.compute(DirectKafkaInputDStream.scala:145)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:352)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:352)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:351)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:351)
at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:426)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:346)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:344)
at scala.Option.orElse(Option.scala:257)
at org.apache.spark.streaming.dstream.DStream.getOrCompute(DStream.scala:341)
at org.apache.spark.streaming.dstream.ForEachDStream.generateJob(ForEachDStream.scala:47)
at org.apache.spark.streaming.DStreamGraph$$anonfun$1.apply(DStreamGraph.scala:115)
at org.apache.spark.streaming.DStreamGraph$$anonfun$1.apply(DStreamGraph.scala:114)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:251)
at scala.collection.AbstractTraversable.flatMap(Traversable.scala:105)
at org.apache.spark.streaming.DStreamGraph.generateJobs(DStreamGraph.scala:114)
at org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$3.apply(JobGenerator.scala:248)
at org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$3.apply(JobGenerator.scala:246)
at scala.util.Try$.apply(Try.scala:161)
at org.apache.spark.streaming.scheduler.JobGenerator.generateJobs(JobGenerator.scala:246)
at org.apache.spark.streaming.scheduler.JobGenerator.org$apache$spark$streaming$scheduler$JobGenerator$$processEvent(JobGenerator.scala:181)
at org.apache.spark.streaming.scheduler.JobGenerator$$anon$1.onReceive(JobGenerator.scala:87)
at org.apache.spark.streaming.scheduler.JobGenerator$$anon$1.onReceive(JobGenerator.scala:86)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
Exception in thread "main" java.lang.reflect.InvocationTargetException
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at org.apache.spark.deploy.worker.DriverWrapper$.main(DriverWrapper.scala:58)
at org.apache.spark.deploy.worker.DriverWrapper.main(DriverWrapper.scala)
Caused by: org.apache.spark.SparkException: ArrayBuffer(kafka.common.NotLeaderForPartitionException, org.apache.spark.SparkException: Couldn't find leader offsets for Set([MyTopic,11]))
at org.apache.spark.streaming.kafka.DirectKafkaInputDStream.latestLeaderOffsets(DirectKafkaInputDStream.scala:123)
at org.apache.spark.streaming.kafka.DirectKafkaInputDStream.compute(DirectKafkaInputDStream.scala:145)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:352)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:352)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:351)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:351)
at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:426)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:346)
at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:344)
at scala.Option.orElse(Option.scala:257)
at org.apache.spark.streaming.dstream.DStream.getOrCompute(DStream.scala:341)
at org.apache.spark.streaming.dstream.ForEachDStream.generateJob(ForEachDStream.scala:47)
at org.apache.spark.streaming.DStreamGraph$$anonfun$1.apply(DStreamGraph.scala:115)
at org.apache.spark.streaming.DStreamGraph$$anonfun$1.apply(DStreamGraph.scala:114)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:251)
at scala.collection.AbstractTraversable.flatMap(Traversable.scala:105)
at org.apache.spark.streaming.DStreamGraph.generateJobs(DStreamGraph.scala:114)
at org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$3.apply(JobGenerator.scala:248)
at org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$3.apply(JobGenerator.scala:246)
at scala.util.Try$.apply(Try.scala:161)
at org.apache.spark.streaming.scheduler.JobGenerator.generateJobs(JobGenerator.scala:246)
at org.apache.spark.streaming.scheduler.JobGenerator.org$apache$spark$streaming$scheduler$JobGenerator$$processEvent(JobGenerator.scala:181)
at org.apache.spark.streaming.scheduler.JobGenerator$$anon$1.onReceive(JobGenerator.scala:87)
at org.apache.spark.streaming.scheduler.JobGenerator$$anon$1.onReceive(JobGenerator.scala:86)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
16/11/02 08:09:21 INFO StreamingContext: Invoking stop(stopGracefully=false) from shutdown hook
16/11/02 08:09:21 INFO JobGenerator: Stopping JobGenerator immediately
16/11/02 08:09:21 INFO RecurringTimer: Stopped timer for JobGenerator after time 1478074160000
16/11/02 08:09:21 INFO JobGenerator: Stopped JobGenerator
16/11/02 08:09:21 INFO JobScheduler: Stopped JobScheduler
16/11/02 08:09:21 INFO StreamingContext: StreamingContext stopped successfully
16/11/02 08:09:21 INFO SparkContext: Invoking stop() from shutdown hook
16/11/02 08:09:21 INFO SparkUI: Stopped Spark web UI at http://10.251.228.103:4040
16/11/02 08:09:21 INFO SparkDeploySchedulerBackend: Shutting down all executors
16/11/02 08:09:21 INFO SparkDeploySchedulerBackend: Asking each executor to shut down
16/11/02 08:09:21 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
16/11/02 08:09:21 INFO MemoryStore: MemoryStore cleared
16/11/02 08:09:21 INFO BlockManager: BlockManager stopped
16/11/02 08:09:21 INFO BlockManagerMaster: BlockManagerMaster stopped
16/11/02 08:09:21 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
16/11/02 08:09:21 INFO SparkContext: Successfully stopped SparkContext
16/11/02 08:09:21 INFO ShutdownHookManager: Shutdown hook called
16/11/02 08:09:21 INFO ShutdownHookManager: Deleting directory /app/spark/spark-1.6.1-bin-hadoop2.6/local/spark-30fb329c-3ccf-4d8c-a06c-2d36e6f968b3/httpd-f81472a2-3262-4eea-8d64-7ff96d2ef3e5
16/11/02 08:09:21 INFO ShutdownHookManager: Deleting directory /app/spark/spark-1.6.1-bin-hadoop2.6/local/spark-30fb329c-3ccf-4d8c-a06c-2d36e6f968b3
Kafka/ZooKeeperでログを調べてみてください。すべてが正常に動作していること、ディスクがいっぱいでないことを確認してください。 –