ちょうど明確化を取得したい、--proxy-ユーザーでのHadoopのKerberosに火花提出一緒に?火花提出--keytab --principal & & --proxy-ユーザパラメータが共存できる場合--keytabと--principalパラメータ
実際のビジネスユーザーとしてジョブを提出する必要がありますが、ユーザーにhadoop kdcのプリンシパルがありません。
プロキシユーザーとケルベロスのプリンシパルを一緒に使うときはいつも例外が発生します。
17/02/09 13:51:43 INFO DFSClient: Created HDFS_DELEGATION_TOKEN token 379 for atlas on 10.12.118.92:8020
Exception in thread "main" java.io.IOException: java.lang.reflect.UndeclaredThrowableException
at org.apache.hadoop.crypto.key.kms.KMSClientProvider.addDelegationTokens(KMSClientProvider.java:888)
at org.apache.hadoop.crypto.key.KeyProviderDelegationTokenExtension.addDelegationTokens(KeyProviderDelegationTokenExtension.java:8
at org.apache.hadoop.hdfs.DistributedFileSystem.addDelegationTokens(DistributedFileSystem.java:2243)
at org.apache.hadoop.mapreduce.security.TokenCache.obtainTokensForNamenodesInternal(TokenCache.java:121)
at org.apache.hadoop.mapreduce.security.TokenCache.obtainTokensForNamenodesInternal(TokenCache.java:100)
at org.apache.hadoop.mapreduce.security.TokenCache.obtainTokensForNamenodes(TokenCache.java:80)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:206)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:315)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:199)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
at org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1293)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.take(RDD.scala:1288)
at org.apache.spark.rdd.RDD$$anonfun$first$1.apply(RDD.scala:1328)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.first(RDD.scala:1327)
at com.databricks.spark.csv.CsvRelation.firstLine$lzycompute(CsvRelation.scala:269)
at com.databricks.spark.csv.CsvRelation.firstLine(CsvRelation.scala:265)
at com.databricks.spark.csv.CsvRelation.inferSchema(CsvRelation.scala:242)
at com.databricks.spark.csv.CsvRelation.<init>(CsvRelation.scala:74)
at com.databricks.spark.csv.DefaultSource.createRelation(DefaultSource.scala:171)
at com.databricks.spark.csv.DefaultSource.createRelation(DefaultSource.scala:44)
at org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:158)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:119)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:109)
at org.sandbox.Main$.main(Main.scala:39)
at org.sandbox.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731)
at org.apache.spark.deploy.SparkSubmit$$anon$1.run(SparkSubmit.scala:163)
at org.apache.spark.deploy.SparkSubmit$$anon$1.run(SparkSubmit.scala:161)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1657)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:161)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.reflect.UndeclaredThrowableException
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1672)
at org.apache.hadoop.crypto.key.kms.KMSClientProvider.addDelegationTokens(KMSClientProvider.java:870)
... 57 more
Caused by: org.apache.hadoop.security.authentication.client.AuthenticationException: Authentication failed, status: 403, message: Forbidde
at org.apache.hadoop.security.authentication.client.AuthenticatedURL.extractToken(AuthenticatedURL.java:274)
at org.apache.hadoop.security.authentication.client.PseudoAuthenticator.authenticate(PseudoAuthenticator.java:77)
at org.apache.hadoop.security.token.delegation.web.DelegationTokenAuthenticator.authenticate(DelegationTokenAuthenticator.java:128
at org.apache.hadoop.security.authentication.client.KerberosAuthenticator.authenticate(KerberosAuthenticator.java:214)
- プロキシ・ユーザーおよび主要なパラメータが一緒に共存することができない場合は、あなたたちはそのことについてのドキュメントがありますか?
- kerberos hadoop環境でのproxy-userパラメータの実際の使用例は何ですか?
Hadoopの「プロキシユーザー」の典型的な例は、「oozie」(ジョブスケジューラ)と「hue」(ゲートウェイUI)です。パスワードを要求せずにジョブを起動できます。あなたが繋がれていなければ、Oozieの場合。 –