これを避けることはできませんでしたので、ここにはscipy.ndimage.grey_dilation
を使用した試みがありますが、かなり高速です。 grey_dilation
は、以下のコードで「構造要素」 - 「成長カーネル」を使用して領域を拡張します。私は、彼らが、プロセス上で与えるどのくらいのコントロールについてどのような経験を持っていないが、彼らはあなたと遊ぶことができる何かある:
import numpy as np
from scipy import ndimage
growth_kernels = """
010 000 010 111
111 111 010 111
010 000 010 111
"""
growth_kernels = """
555555555 543212345
444444444 543212345
333333333 543212345
222222222 543212345
111101111 543202345
222222222 543212345
333333333 543212345
444444444 543212345
555555555 543212345
"""
def patches(shape, N, maxiter=100):
# load kernels
kernels = np.array([[[int(d) for d in s] for s in l.strip().split()]
for l in growth_kernels.split('\n')
if l.strip()], np.int)
nlev = np.max(kernels) + 1
# special case for binary kernels
if nlev == 2:
kernels = 2 - kernels
nlev = 3
kernels = -kernels.swapaxes(0, 1) * N
key, kex = kernels.shape[1:]
kernels[:, key//2, kex//2] = 0
# seed patches leave a gap between 0 and the first patch
out = np.zeros(shape, int)
out.ravel()[np.random.choice(out.size, N)] = np.arange((nlev-1)*N+1, nlev*N+1)
# shuffle labels after each iteration, so larger numbers do not get
# a systematic advantage
shuffle = np.arange((nlev+1)*N+1)
# also map negative labels to zero
shuffle[nlev*N+1:] = 0
shuffle_helper = shuffle[1:nlev*N+1].reshape(nlev, -1)
for j in range(maxiter):
# pick one of the kernels
k = np.random.randint(0, kernels.shape[0])
# grow patches
out = ndimage.grey_dilation(
out, kernels.shape[1:], structure=kernels[k], mode='constant')
# shuffle
shuffle_helper[...] = np.random.permutation(
shuffle[(nlev-1)*N+1:nlev*N+1])
out = shuffle[out]
if np.all(out):
break
return out % N
res = patches((30, 80), 26)
print(len(np.unique(res)))
for line in res:
print(''.join(chr(j+65) for j in line))
出力例:質問は、ここでのコードの中心であることをsuppsedさ
WWWWWKKKKKKKKKKKKMMMLLLLLLLLLLJJJJJJJJJCCCCCCCCCCCCCCCCCSSSSSSSSSAAAAAAAAAAAAAAA
WWWWWKKKKKKKKKKKKMMMLLLLLLLLLLJJJJJJJJJCCCCCCCCCCCCCSSSSSSSSSSSSSAAAAAAAAAAAAAAA
WWWWWKKKKKKKKKKKKMMMLLLLLLLLLLJJJJJJJJJJJJJCCCCCCCCCSSSSSSSSSSSSSAAAAAAAAAAAAAAA
WWWWWKKKKKKKKKKKKMMMLLLLLLLLLLLLLLJJJJJJJJJCCCCCCCCCSSSSSRRRRRRRRRAAAAAAAAAAAAAA
WWWFFFFKKKKKKKKKKMMMLLLLLLLLLLLLLLJJJJJJJJJCCCCCCCCCSSSSSRRRRRRRRRAAAAAAAAAAAAAA
WWWFFFFKKKKKMMMMMMMMMLLLLLLLLLLLLLJJJJJJJJJCCCCCCCCCSSSSSRRRRRRRRRAAAAAAAAAAAAAA
WWWFFFFKKKKKMMMMMMMMMLLLLLLLLLLLLLJJJJJJJJJJJJJCSSSSSSSSSRRZZZZZZZZZZZGGGGGGGGGG
WWWFFFFFFFFFMMMMMMMMTTTTTTLLLLLLLLJJJJJJJJJJJJJCSSSSSSSSSRRZZZZZZZZZZZGGGGGGGGGG
WWWFFFFFFFFFMMMMMMMMTTTTTTLLLLLLLLJJJJJJJJJJJJJHSSSSSSSSSRRZZZZZZZZZZZGGGGGGGGGG
FFFFFFNNNNNNMMMMMMMMTTTTTTLLLLLLLLJJJJJJJJJJJJJHSSSSSSSSSRRZZZZZZZZZZZGGGGGGGGGG
FFFFFFNNNNNNMMMMMMMMTTTTTTLLLLLLLLJJJJJHHHHHHHHHSRRRRRRRRRRZZZZZZZZZZZGGGGGGGGGG
FFFFFFNNNNNNMMMMMMMMTTTTTTLLLLLLLLLHHHHHHHHHHHHHSRRRRRRRRRRZZZZZZZZZZZGGGGGGGGGO
FFFFFFNNNNNNMMMMMMMMTTTTTTTTTTTTHHHHHHHHHHHHHHHHDRRRRZZZZZZZZZZZZZZZZZGGGGGGGGGO
NNNNNNNNNNNNMMMMMMMMTTTTTTTTTTTTHHHHHHHHDDDDDDDDDDRRRZZZZZZZZZZZZZZZZZGGGGGGGGGO
NNNNNNNNNNNNNNNTTTTTTTTTTTTTTTTTHHHHHHHHDDDDDDDDDDUUUZZZZZZZZZZZZZZZZZGGGGGGGGGO
EEEEENNNNNNNNNNTTTTTTTTTTTTTTTTTHHHHHHHHDDDDDDDDDDUUUUUUUUUUUUUUUUZZZZGOOOOOOOOO
EEEEENNNNNNNNNNNTTTTTTTTTTTTTTTHHHHHHHHHDDDDDDDDDUUUUUUUUUUUUUUUUUZZZZGOOOOOOOOO
EEEEENNNNNNNNNNNTTTTTTTTTTTTTTTHHHHHHHHHDDDDDDDDDUUUUUUUUUUUUUUUUUZZZZGOOOOOOOOO
EEEEEEEEEEEENNNNTTTTTTTTTTTTTTTHHHHHHHHHDDDDDDDDDUUUUUUUUUUUUUUUUUXXXXGOOOOOOOOO
EEEEEEEEEEEENNNNTTTTTTTTTTTTTTTHHDDDDDDDDDDDDDDDDUUUUUUUUUUUUUUUUUXXXXXOOOOOOOOO
EEEEEEEEEEEENNNNVVVVVVVVVVVTTTTHHDDDDDDDDDDDDDDDDPPPPPBBUUUUUUUUUUXXXXXOOOOOOOOO
EEEEEEEEEEEEVVVVVVVVVVVVVVVTTTTQQDDDDDDDDDDDDDDDDPPPPPBBUUUUUUUUUUXXXXXXXXXXXXXX
EEEEEEEEEEEEVVVVVVVVVVVVVVVTTTTQQQQQQQQQQQQQQPPPPPPPPPBBUUUUUUUUUUXXXXXXXXXXXXXX
EEEEEEEEEEEEVVVVVVVVVVVVVVVTTTTQQQQQQQQQQQQQQQQQPPPPPPBBUUUUUUUUUUXXXXXXXXXXXXXX
EEEEEEEEEEVVVVVVVVVVVVVVVVVVVHHQQQQQQQQQQQQQQQQQPPPPPPBBUUUUUIIIIIIIIXXXXXXXXXXX
EEEEEEEEEEVVVVVVVVVVVVVVVVVVVQQQQQQQQQQQQQQQQQQQPPPPPPBBBBBIIIIIIIIYYYYYXXXXXXXX
EEEEEEEEEEVVVVVVVVVVVVVVVVVVVQQQQQQQQQQQQQQQQQQQPPPPPPBBBBBIIIIIIIIYYYYYXXXXXXXX
EEEEEEEEEEVVVVVVVVVVVVVVVVVVVQQQQQQQQQQQQQQQQQQQPPPPPPBBBBBIIIIIIIIYYYYYXXXXXXXX
EEEEEEEEEEVVVVVVVVVVVVVVVVVVVQQQQQQQQQQQQQQQQQQQPPPPPPBBBBBIIIIIIIIYYYYYXXXXXXXX
EEEEEEEEEEVVVVVVVVVVVVVVVVVVVQQQQQQQQQQQQQQQQQQQPPBBBBBBIIIIIIIIIIIYYYYYXXXXXXXX
しかし、アイデアは無作為に1つの「所有者」番号で0の塗りつぶした行列をシードし、それから満たすために0の塗りつぶし領域にそれぞれ「成長」させます – f5r5e5d
ありがとう、申し訳ありません!私が持っているのは、このモデルのコーディング部分です。これは実際に私が今働いている方法です。ランダムな座標ペアとランダム探索半径(r)を選択します。すべての0細胞にr離れて成長する。問題は、私が奇妙な形の長いパッチの土地で終わることです。これは、私がランダムな方法で得ることができる最高のものかもしれません。 – Chris