1
私は、Pythonで、Spark Streaming + Kafka Integration Guide (Kafka broker version 0.8.2.1 or higher)に記載されている例に従ってApache Sparkを使用してKafkaメッセージをストリーミングするためにSparkアプリケーションを作成しましたが、メッセージを送信する前にシャットダウンしています。Spark Streamingアプリケーションがすぐにシャットダウンされ、カフカレコードを処理しないのはなぜですか?
ここで、シャットダウンセクションが出力から開始されます。
16/11/26 17:11:06 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, 1********6, 58045)
16/11/26 17:11:06 INFO VerifiableProperties: Verifying properties
16/11/26 17:11:06 INFO VerifiableProperties: Property group.id is overridden to
16/11/26 17:11:06 INFO VerifiableProperties: Property zookeeper.connect is overridden to
16/11/26 17:11:07 INFO SparkContext: Invoking stop() from shutdown hook
16/11/26 17:11:07 INFO SparkUI: Stopped Spark web UI at http://192.168.1.16:4040
16/11/26 17:11:07 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
16/11/26 17:11:07 INFO MemoryStore: MemoryStore cleared
16/11/26 17:11:07 INFO BlockManager: BlockManager stopped
16/11/26 17:11:07 INFO BlockManagerMaster: BlockManagerMaster stopped
16/11/26 17:11:07 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
16/11/26 17:11:07 INFO SparkContext: Successfully stopped SparkContext
16/11/26 17:11:07 INFO ShutdownHookManager: Shutdown hook called
16/11/26 17:11:07 INFO ShutdownHookManager: Deleting directory /private/var/folders/yn/t3pvrk7s231_11ff2lqr4jhr0000gn/T/spark-1876feee-9b71-413e-a505-99c414aafabf/pyspark-1d97c3dd-0889-42ed-b559-d0fd473faa22
16/11/26 17:11:07 INFO ShutdownHookManager: Deleting directory /private/var/folders/yn/t3pvrk7s231_11ff2lqr4jhr0000gn/T/spark-1876feee-9b71-413e-a505-99c414aafabf
私はそれを待つように言わなければならない方法があるのでしょうか?
全コード:
from pyspark.streaming.kafka import KafkaUtils
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
sc = SparkContext("local[2]", "TwitterWordCount")
ssc = StreamingContext(sc, 1)
directKafkaStream = KafkaUtils.createDirectStream(ssc, ["next"], {"metadata.broker.list": "localhost:9092"})
offsetRanges = []
def storeOffsetRanges(rdd):
global offsetRanges
offsetRanges = rdd.offsetRanges()
return rdd
def printOffsetRanges(rdd):
for o in offsetRanges:
print("Printing! %s %s %s %s" % o.topic, o.partition, o.fromOffset, o.untilOffset)
directKafkaStream\
.transform(storeOffsetRanges)\
.foreachRDD(printOffsetRanges)
そして、ここでは役に立ちます場合には、それを実行するコマンドです。
spark-submit --packages org.apache.spark:spark-streaming-kafka-0-8_2.11:2.0.2 producer.py