2
データ型の配列型を文字列型に変換する必要があります。 私は従来の方法で試しました。 私はもっと良い方法でそれをやることができると感じています。あなたは私を導くことができますか?ユーザー定義関数の実行に失敗しました($:出力データセットApache Spark Javaでデータ型の配列型を文字列型に変換する方法
+---------------------------+-----------+---------------------------------------------------------------------------------------------------|
|ManufacturerSource |upcSource |productDescriptionSource | |
+---------------------------+-----------+---------------------------------------------------------------------------------------------------|
|3M |51115665883|c gdg whl t27 5 x 1 4 x 7 8 grinding flap wheels 36 grit 12 250 rpm | | |
|3M |51115665937|c gdg whl t27 q c 6 x 1 4 x 5 8 11 grinding flap wheels 36 grit 10 200 rpm | |
|3M |0 |3mite rb cloth 3 x 2 wd | |
|3M |0 |trizact disc cloth 237aaa16x5 hole | |
+-------------------------------------------------------------------------------------------------------------------------------------------|
従来のアプローチ1
Dataset<Row> afterstopwordsRemoved =
stopwordsRemoved.select("productDescriptionSource");
stopwordsRemoved.show();
List<Row> individaulRows= afterstopwordsRemoved.collectAsList();
System.out.println("After flatmap\n");
List<String> temp;
for(Row individaulRow:individaulRows){
temp=individaulRow.getList(0);
System.out.println(String.join(" ",temp));
}
Approach2(結果を得ていない)
例外期待 入力Dataset1データ
+---------------------------+-----------+-------------------------------------------------------------------------------------------------+
ManufacturerSource |upcSource |productDescriptionSource | |
+---------------------------+-----------+-------------------------------------------------------------------------------------------------+
|3M |51115665883|[c, gdg, whl, t27, 5, x, 1, 4, x, 7, 8, grindig, flap, wheels, 36, grit, 12, 250, rpm] | |
|3M |51115665937|[c, gdg, whl, t27, q, c, 6, x, 1, 4, x, 5, 8, 11, grinding, flap, wheels, 36, grit, 10, 200, rpm]| |
|3M |0 |[3mite, rb, cloth, 3, x, 2, wd] | |
|3M |0 |[trizact, disc, cloth, 237aaa16x5, hole] | |
-------------------------------------------------------------------------------------------------------------------------------------------
anonfun $ 27: (配列)私はconcat_ws
を使用したい=>文字列)
UDF1 untoken = new UDF1<String,String[]>() {
public String call(String[] token) throws Exception {
//return types.replaceAll("[^a-zA-Z0-9\\s+]", "");
return Arrays.toString(token);
}
@Override
public String[] call(String t1) throws Exception {
// TODO Auto-generated method stub
return null;
}
};
sqlContext.udf().register("unTokenize", untoken, DataTypes.StringType);
source.createOrReplaceTempView("DataSetOfTokenize");
Dataset<Row> newDF = sqlContext.sql("select *,unTokenize(productDescriptionSource)FROM DataSetOfTokenize");
newDF.show(4000,false);
おかげで... –