これらの2つのクエリによって得られた結果は同じであると私は信じていますか?これらのSQLクエリの実行時間は同じですか?
最初のクエリ:
SELECT
sensor_id,
measurement_time,
measurement_value
FROM
public.measurement_pm2_5
WHERE (sensor_id = 12 AND measurement_time BETWEEN to_timestamp(3000) AND to_timestamp(12000))
OR (sensor_id = 27 AND measurement_time BETWEEN to_timestamp(3000) AND to_timestamp(12000))
OR (sensor_id = 1 AND measurement_time BETWEEN to_timestamp(500) AND to_timestamp(1000))
OR (sensor_id = 1 AND measurement_time BETWEEN to_timestamp(6000) AND to_timestamp(9000));
2番目のクエリ:実行時間程度
SELECT
sensor_id,
measurement_time,
measurement_value
FROM
public.measurement_pm2_5
WHERE (sensor_id in (12,27) AND measurement_time BETWEEN to_timestamp(3000) AND to_timestamp(12000))
OR (sensor_id = 1 AND ((measurement_time BETWEEN to_timestamp(500) AND to_timestamp(1000)) OR (measurement_time BETWEEN to_timestamp(6000) AND to_timestamp(9000))));
どのように?違いはどれほど大きいのですか?
最初のクエリ:
Start-up Cost: 0
Total Cost: 580.56
Number of Rows: 1
Row Width: 18
Start-up Time: 2.676
Total Time: 2.676
Real Number of Rows: 0
Loops: 1
Hash Join (cost=0.10..280.06 rows=115 width=18) (actual time=8.596..8.596 rows=0 loops=1)
Hash Cond: (p.sensor_id = "*VALUES*".column1)
Join Filter: ((p.measurement_time >= to_timestamp(("*VALUES*".column2)::double precision)) AND (p.measurement_time <= to_timestamp(("*VALUES*".column3)::double precision)))
Rows Removed by Join Filter: 590
-> Seq Scan on measurement_pm2_5 p (cost=0.00..207.39 rows=12439 width=18) (actual time=0.010..2.558 rows=12443 loops=1)
-> Hash (cost=0.05..0.05 rows=4 width=12) (actual time=0.017..0.017 rows=4 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 9kB
-> Values Scan on "*VALUES*" (cost=0.00..0.05 rows=4 width=12) (actual time=0.002..0.003 rows=4 loops=1)
Planning time: 0.148 ms
Execution time: 8.627 ms
2番目のクエリ:マイクのクエリ@
Start-up Cost: 0
Total Cost: 456.17
Number of Rows: 1
Row Width: 18
Start-up Time: 2.237
Total Time: 2.237
Real Number of Rows: 0
Loops: 1
Hash Join (cost=0.10..280.06 rows=115 width=18) (actual time=8.596..8.596 rows=0 loops=1)
Hash Cond: (p.sensor_id = "*VALUES*".column1)
Join Filter: ((p.measurement_time >= to_timestamp(("*VALUES*".column2)::double precision)) AND (p.measurement_time <= to_timestamp(("*VALUES*".column3)::double precision)))
Rows Removed by Join Filter: 590
-> Seq Scan on measurement_pm2_5 p (cost=0.00..207.39 rows=12439 width=18) (actual time=0.010..2.558 rows=12443 loops=1)
-> Hash (cost=0.05..0.05 rows=4 width=12) (actual time=0.017..0.017 rows=4 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 9kB
-> Values Scan on "*VALUES*" (cost=0.00..0.05 rows=4 width=12) (actual time=0.002..0.003 rows=4 loops=1)
Planning time: 0.148 ms
Execution time: 8.627 ms
:
Hash Join (cost=0.10..280.06 rows=115 width=18) (actual time=8.596..8.596 rows=0 loops=1)
Hash Cond: (p.sensor_id = "*VALUES*".column1)
Join Filter: ((p.measurement_time >= to_timestamp(("*VALUES*".column2)::double precision)) AND (p.measurement_time <= to_timestamp(("*VALUES*".column3)::double precision)))
Rows Removed by Join Filter: 590
-> Seq Scan on measurement_pm2_5 p (cost=0.00..207.39 rows=12439 width=18) (actual time=0.010..2.558 rows=12443 loops=1)
-> Hash (cost=0.05..0.05 rows=4 width=12) (actual time=0.017..0.017 rows=4 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 9kB
-> Values Scan on "*VALUES*" (cost=0.00..0.05 rows=4 width=12) (actual time=0.002..0.003 rows=4 loops=1)
Planning time: 0.148 ms
Execution time: 8.627 ms
質問がある場合、これら二つの間の時間の実行の違いこれらのクエリが大規模なデータベースで行われる場合、クエリは重要ですか?
2つのクエリの実行時間を知りたい場合は、システム上のデータベース上のデータに対してクエリを実行します。それはあなたが求めている質問に対する答えをあなたに与えるでしょう。 –
'explain(analyze)'を使用して実行計画を確認してください –
実行時間が問題でない場合、どうしてあなたに質問していますか? – jarlh