thisの例でBokeh galleryに触発されて、巨大な量の収集データ(本質的に生物学的データの時間経過)をスライドするスライダを実装しようとしました。スライダでカスタムのJavaScriptコールバックを使用する代わりに、ウィジェットを使用しようとしました。これが機能するかどうかはわかりません。私の最小の実例を見つけてください。スライダと画像が正しく表示されますが、更新が行われないようです。Bokeh Slider with Pythonのコールバックで画像をスライド
##Creating the 15 different pictures
#Want to make 15 different pictures of a certain field function evaluated on a grid of img_size_x x img_size_y
import numpy as np
img_size_x,img_size_y = (512,512)
variations=15
#Make the field
xx,yy=np.meshgrid(np.arange(img_size_x),np.arange(img_size_y))
#Broadcast the field into as many copies as there are variations to make use of the ufuncs
xx= np.tile(xx,variations).reshape(variations,img_size_x,img_size_y)
yy= np.asarray(map(np.transpose,np.tile(yy.T,variations).reshape(variations,img_size_x,img_size_y)))
varied_parameter=np.linspace(.01,0.5,variations) #frequencies of a sin/cos function, for example
varied_parameter=np.repeat(varied_parameter,img_size_x*img_size_y).reshape(variations,img_size_x,img_size_y) #broadcast
matrix_images=np.cos(varied_parameter*xx)+np.sin(varied_parameter*yy) # field function evaluated for diff frequencies.
##Creation of the Bokeh interface to slide through these pictures
from bokeh.plotting import figure, show, output_file, output_notebook
from bokeh.models import ColumnDataSource
from bokeh.layouts import row, widgetbox
from bokeh.models.widgets import Slider
import bokeh.palettes as pal
output_notebook()
data=matrix_images[0] #starting value for the column data source
source = ColumnDataSource(dict(image=[data])) #the figure.image function takes a vector of matrices
image_sl = Slider(title="Image number", value=0, start=0, end=variations-1, step=1) #slider to go through the images
def update_img(attrname, old, new):
curr_value = image_sl.value
x=matrix_images[int(curr_value)] #make sure index is int to select image number 'curr_value'
source.data = dict(image=[x])
image_sl.on_change('value', update_img) #give slider its callback function
inputs = widgetbox(image_sl) #wrap the slider into a display object
p = figure(x_range=(0, 10), y_range=(0, 10))
# must give a vector of image data for image parameter
p.image('image', source=source,x=0, y=0, dw=10, dh=10, palette=pal.Greys256)
show(row([p,image_sl])) # open a browser