私はTensorflowで畳み込みニューラルネットワークを訓練しています。私のコードはエラーなく完了まで実行されます。つまり、NNが知っている重みと偏りをどうやって節約できているのかを正確に理解することができませんでした(サーバーでトレーニングをしていて、ローカルで簡単に視覚化することが重要です)。Tensorflowで訓練された重みとバイアスを保存/復元するのに混乱します
私は以下のようなものを私の重みとバイアスを初期化します。
weights = {
'wConv1': tf.Variable(tf.random_normal([5, 5, 1, 3],0,0.25), name='wC1'),
'wConv2': tf.Variable(tf.random_normal([5, 5, 3, 32],0,0.25), name='wC2'),
'wConv3': tf.Variable(tf.random_normal([5, 5, 32, 64],0,0.25), name='wC3'),
'wConv4': tf.Variable(tf.random_normal([5, 5, 64, 128],0,0.25), name='wC4'),
'wConv5': tf.Variable(tf.random_normal([5, 5, 128, 64],0,0.25), name='wC5'),
'wConv6': tf.Variable(tf.random_normal([5, 5, 64, 32],0,0.25), name='wC6'),
'wConv7': tf.Variable(tf.random_normal([5, 5, 32, 16],0,0.25), name='wC7'),
'wOUT' : tf.Variable(tf.random_normal([5, 5, 16, 1],0,0.25), name='wCOUT')
}
biases = {
'bConv1': tf.Variable(tf.random_normal([3]), name='bC1'),
'bConv2': tf.Variable(tf.random_normal([32]), name='bC2'),
'bConv3': tf.Variable(tf.random_normal([64]), name='bC3'),
'bConv4': tf.Variable(tf.random_normal([128]), name='bC4'),
'bConv5': tf.Variable(tf.random_normal([64]), name='bC5'),
'bConv6': tf.Variable(tf.random_normal([32]), name='bC6'),
'bConv7': tf.Variable(tf.random_normal([16]), name='bC7'),
'bOUT': tf.Variable(tf.random_normal([1]), name='bCOUT')
}
その後、私は実行かつてしかし、多くのエポックが完了し、私は以下を使用して、すべてを保存します。今すぐ
saver = tf.train.Saver({"weights": weights, "biases": biases})
save_path = saver.save(sess, "./output/trained.ckpt")
、自分でマシン私は重みをロードしようとする評価スクリプトを持っています:
with sess.as_default():
saver = tf.train.import_meta_graph('output.ckpt.meta')
saver.restore(sess,tf.train.latest_checkpoint('./'))
a= tf.all_variables()
sess.run(tf.global_variables_initializer())
b=sess.run(pred,feed_dict={x: input[:,:,:,30,:]})
今、問題 は、私の質問は、私は訓練された重みとバイアスのみで保存することができますどのように、ある
<tf.Variable 'wC1:0' shape=(5, 5, 1, 3) dtype=float32_ref>,
<tf.Variable 'wC2:0' shape=(5, 5, 3, 32) dtype=float32_ref>,
<tf.Variable 'wC3:0' shape=(5, 5, 32, 64) dtype=float32_ref>,
<tf.Variable 'wC4:0' shape=(5, 5, 64, 128) dtype=float32_ref>,
<tf.Variable 'wC5:0' shape=(5, 5, 128, 64) dtype=float32_ref>,
<tf.Variable 'wC6:0' shape=(5, 5, 64, 32) dtype=float32_ref>,
<tf.Variable 'wC7:0' shape=(5, 5, 32, 16) dtype=float32_ref>,
<tf.Variable 'wCOUT:0' shape=(5, 5, 16, 1) dtype=float32_ref>,
<tf.Variable 'bC1:0' shape=(3,) dtype=float32_ref>,
<tf.Variable 'bC2:0' shape=(32,) dtype=float32_ref>,
<tf.Variable 'bC3:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bC4:0' shape=(128,) dtype=float32_ref>,
<tf.Variable 'bC5:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bC6:0' shape=(32,) dtype=float32_ref>,
<tf.Variable 'bC7:0' shape=(16,) dtype=float32_ref>,
<tf.Variable 'bCOUT:0' shape=(1,) dtype=float32_ref>,
<tf.Variable 'beta1_power:0' shape=() dtype=float32_ref>,
<tf.Variable 'beta2_power:0' shape=() dtype=float32_ref>,
<tf.Variable 'wC1/Adam:0' shape=(5, 5, 1, 3) dtype=float32_ref>,
<tf.Variable 'wC1/Adam_1:0' shape=(5, 5, 1, 3) dtype=float32_ref>,
<tf.Variable 'wC2/Adam:0' shape=(5, 5, 3, 32) dtype=float32_ref>,
<tf.Variable 'wC2/Adam_1:0' shape=(5, 5, 3, 32) dtype=float32_ref>,
<tf.Variable 'wC3/Adam:0' shape=(5, 5, 32, 64) dtype=float32_ref>,
<tf.Variable 'wC3/Adam_1:0' shape=(5, 5, 32, 64) dtype=float32_ref>,
<tf.Variable 'wC4/Adam:0' shape=(5, 5, 64, 128) dtype=float32_ref>,
<tf.Variable 'wC4/Adam_1:0' shape=(5, 5, 64, 128) dtype=float32_ref>,
<tf.Variable 'wC5/Adam:0' shape=(5, 5, 128, 64) dtype=float32_ref>,
<tf.Variable 'wC5/Adam_1:0' shape=(5, 5, 128, 64) dtype=float32_ref>,
<tf.Variable 'wC6/Adam:0' shape=(5, 5, 64, 32) dtype=float32_ref>,
<tf.Variable 'wC6/Adam_1:0' shape=(5, 5, 64, 32) dtype=float32_ref>,
<tf.Variable 'wC7/Adam:0' shape=(5, 5, 32, 16) dtype=float32_ref>,
<tf.Variable 'wC7/Adam_1:0' shape=(5, 5, 32, 16) dtype=float32_ref>,
<tf.Variable 'wCOUT/Adam:0' shape=(5, 5, 16, 1) dtype=float32_ref>,
<tf.Variable 'wCOUT/Adam_1:0' shape=(5, 5, 16, 1) dtype=float32_ref>,
<tf.Variable 'bC1/Adam:0' shape=(3,) dtype=float32_ref>,
<tf.Variable 'bC1/Adam_1:0' shape=(3,) dtype=float32_ref>,
<tf.Variable 'bC2/Adam:0' shape=(32,) dtype=float32_ref>,
<tf.Variable 'bC2/Adam_1:0' shape=(32,) dtype=float32_ref>,
<tf.Variable 'bC3/Adam:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bC3/Adam_1:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bC4/Adam:0' shape=(128,) dtype=float32_ref>,
<tf.Variable 'bC4/Adam_1:0' shape=(128,) dtype=float32_ref>,
<tf.Variable 'bC5/Adam:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bC5/Adam_1:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bC6/Adam:0' shape=(32,) dtype=float32_ref>,
<tf.Variable 'bC6/Adam_1:0' shape=(32,) dtype=float32_ref>,
<tf.Variable 'bC7/Adam:0' shape=(16,) dtype=float32_ref>,
<tf.Variable 'bC7/Adam_1:0' shape=(16,) dtype=float32_ref>,
<tf.Variable 'bCOUT/Adam:0' shape=(1,) dtype=float32_ref>,
<tf.Variable 'bCOUT/Adam_1:0' shape=(1,) dtype=float32_ref>,
<tf.Variable 'wC1:0' shape=(5, 5, 1, 3) dtype=float32_ref>,
<tf.Variable 'wC2:0' shape=(5, 5, 3, 32) dtype=float32_ref>,
<tf.Variable 'wC3:0' shape=(5, 5, 32, 64) dtype=float32_ref>,
<tf.Variable 'wC4:0' shape=(5, 5, 64, 128) dtype=float32_ref>,
<tf.Variable 'wC5:0' shape=(5, 5, 128, 64) dtype=float32_ref>,
<tf.Variable 'wC6:0' shape=(5, 5, 64, 32) dtype=float32_ref>,
<tf.Variable 'wC7:0' shape=(5, 5, 32, 16) dtype=float32_ref>,
<tf.Variable 'wCOUT:0' shape=(5, 5, 16, 1) dtype=float32_ref>,
<tf.Variable 'bC1:0' shape=(3,) dtype=float32_ref>,
<tf.Variable 'bC2:0' shape=(32,) dtype=float32_ref>,
<tf.Variable 'bC3:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bC4:0' shape=(128,) dtype=float32_ref>,
<tf.Variable 'bC5:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bC6:0' shape=(32,) dtype=float32_ref>,
<tf.Variable 'bC7:0' shape=(16,) dtype=float32_ref>,
<tf.Variable 'bCOUT:0' shape=(1,) dtype=float32_ref>,
<tf.Variable 'beta1_power:0' shape=() dtype=float32_ref>,
<tf.Variable 'beta2_power:0' shape=() dtype=float32_ref>,
<tf.Variable 'wC1/Adam:0' shape=(5, 5, 1, 3) dtype=float32_ref>,
<tf.Variable 'wC1/Adam_1:0' shape=(5, 5, 1, 3) dtype=float32_ref>,
<tf.Variable 'wC2/Adam:0' shape=(5, 5, 3, 32) dtype=float32_ref>,
<tf.Variable 'wC2/Adam_1:0' shape=(5, 5, 3, 32) dtype=float32_ref>,
<tf.Variable 'wC3/Adam:0' shape=(5, 5, 32, 64) dtype=float32_ref>,
<tf.Variable 'wC3/Adam_1:0' shape=(5, 5, 32, 64) dtype=float32_ref>,
<tf.Variable 'wC4/Adam:0' shape=(5, 5, 64, 128) dtype=float32_ref>,
<tf.Variable 'wC4/Adam_1:0' shape=(5, 5, 64, 128) dtype=float32_ref>,
<tf.Variable 'wC5/Adam:0' shape=(5, 5, 128, 64) dtype=float32_ref>,
<tf.Variable 'wC5/Adam_1:0' shape=(5, 5, 128, 64) dtype=float32_ref>,
<tf.Variable 'wC6/Adam:0' shape=(5, 5, 64, 32) dtype=float32_ref>,
<tf.Variable 'wC6/Adam_1:0' shape=(5, 5, 64, 32) dtype=float32_ref>,
<tf.Variable 'wC7/Adam:0' shape=(5, 5, 32, 16) dtype=float32_ref>,
<tf.Variable 'wC7/Adam_1:0' shape=(5, 5, 32, 16) dtype=float32_ref>,
<tf.Variable 'wCOUT/Adam:0' shape=(5, 5, 16, 1) dtype=float32_ref>,
<tf.Variable 'wCOUT/Adam_1:0' shape=(5, 5, 16, 1) dtype=float32_ref>,
<tf.Variable 'bC1/Adam:0' shape=(3,) dtype=float32_ref>,
<tf.Variable 'bC1/Adam_1:0' shape=(3,) dtype=float32_ref>,
<tf.Variable 'bC2/Adam:0' shape=(32,) dtype=float32_ref>,
<tf.Variable 'bC2/Adam_1:0' shape=(32,) dtype=float32_ref>,
<tf.Variable 'bC3/Adam:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bC3/Adam_1:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bC4/Adam:0' shape=(128,) dtype=float32_ref>,
<tf.Variable 'bC4/Adam_1:0' shape=(128,) dtype=float32_ref>,
<tf.Variable 'bC5/Adam:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bC5/Adam_1:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bC6/Adam:0' shape=(32,) dtype=float32_ref>,
<tf.Variable 'bC6/Adam_1:0' shape=(32,) dtype=float32_ref>,
<tf.Variable 'bC7/Adam:0' shape=(16,) dtype=float32_ref>,
<tf.Variable 'bC7/Adam_1:0' shape=(16,) dtype=float32_ref>,
<tf.Variable 'bCOUT/Adam:0' shape=(1,) dtype=float32_ref>,
<tf.Variable 'bCOUT/Adam_1:0' shape=(1,) dtype=float32_ref>,
<tf.Variable 'wC1:0' shape=(5, 5, 1, 3) dtype=float32_ref>,
<tf.Variable 'wC2:0' shape=(5, 5, 3, 32) dtype=float32_ref>,
<tf.Variable 'wC3:0' shape=(5, 5, 32, 64) dtype=float32_ref>,
<tf.Variable 'wC4:0' shape=(5, 5, 64, 128) dtype=float32_ref>,
<tf.Variable 'wC5:0' shape=(5, 5, 128, 64) dtype=float32_ref>,
<tf.Variable 'wC6:0' shape=(5, 5, 64, 32) dtype=float32_ref>,
<tf.Variable 'wC7:0' shape=(5, 5, 32, 16) dtype=float32_ref>,
<tf.Variable 'wCOUT:0' shape=(5, 5, 16, 1) dtype=float32_ref>,
<tf.Variable 'bC1:0' shape=(3,) dtype=float32_ref>,
<tf.Variable 'bC2:0' shape=(32,) dtype=float32_ref>,
<tf.Variable 'bC3:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bC4:0' shape=(128,) dtype=float32_ref>,
<tf.Variable 'bC5:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bC6:0' shape=(32,) dtype=float32_ref>,
<tf.Variable 'bC7:0' shape=(16,) dtype=float32_ref>,
<tf.Variable 'bCOUT:0' shape=(1,) dtype=float32_ref>,
<tf.Variable 'beta1_power:0' shape=() dtype=float32_ref>,
<tf.Variable 'beta2_power:0' shape=() dtype=float32_ref>,
<tf.Variable 'wC1/Adam:0' shape=(5, 5, 1, 3) dtype=float32_ref>,
<tf.Variable 'wC1/Adam_1:0' shape=(5, 5, 1, 3) dtype=float32_ref>,
<tf.Variable 'wC2/Adam:0' shape=(5, 5, 3, 32) dtype=float32_ref>,
<tf.Variable 'wC2/Adam_1:0' shape=(5, 5, 3, 32) dtype=float32_ref>,
<tf.Variable 'wC3/Adam:0' shape=(5, 5, 32, 64) dtype=float32_ref>,
<tf.Variable 'wC3/Adam_1:0' shape=(5, 5, 32, 64) dtype=float32_ref>,
<tf.Variable 'wC4/Adam:0' shape=(5, 5, 64, 128) dtype=float32_ref>,
<tf.Variable 'wC4/Adam_1:0' shape=(5, 5, 64, 128) dtype=float32_ref>,
<tf.Variable 'wC5/Adam:0' shape=(5, 5, 128, 64) dtype=float32_ref>,
<tf.Variable 'wC5/Adam_1:0' shape=(5, 5, 128, 64) dtype=float32_ref>,
<tf.Variable 'wC6/Adam:0' shape=(5, 5, 64, 32) dtype=float32_ref>,
<tf.Variable 'wC6/Adam_1:0' shape=(5, 5, 64, 32) dtype=float32_ref>,
<tf.Variable 'wC7/Adam:0' shape=(5, 5, 32, 16) dtype=float32_ref>,
<tf.Variable 'wC7/Adam_1:0' shape=(5, 5, 32, 16) dtype=float32_ref>,
<tf.Variable 'wCOUT/Adam:0' shape=(5, 5, 16, 1) dtype=float32_ref>,
<tf.Variable 'wCOUT/Adam_1:0' shape=(5, 5, 16, 1) dtype=float32_ref>,
<tf.Variable 'bC1/Adam:0' shape=(3,) dtype=float32_ref>,
<tf.Variable 'bC1/Adam_1:0' shape=(3,) dtype=float32_ref>,
<tf.Variable 'bC2/Adam:0' shape=(32,) dtype=float32_ref>,
<tf.Variable 'bC2/Adam_1:0' shape=(32,) dtype=float32_ref>,
<tf.Variable 'bC3/Adam:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bC3/Adam_1:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bC4/Adam:0' shape=(128,) dtype=float32_ref>,
<tf.Variable 'bC4/Adam_1:0' shape=(128,) dtype=float32_ref>,
<tf.Variable 'bC5/Adam:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bC5/Adam_1:0' shape=(64,) dtype=float32_ref>,
<tf.Variable 'bC6/Adam:0' shape=(32,) dtype=float32_ref>,
<tf.Variable 'bC6/Adam_1:0' shape=(32,) dtype=float32_ref>,
<tf.Variable 'bC7/Adam:0' shape=(16,) dtype=float32_ref>,
<tf.Variable 'bC7/Adam_1:0' shape=(16,) dtype=float32_ref>,
<tf.Variable 'bCOUT/Adam:0' shape=(1,) dtype=float32_ref>,
<tf.Variable 'bCOUT/Adam_1:0' shape=(1,) dtype=float32_ref>]
:私は「」私は私のバイアスと重み変数の多くのコピーと思われるもので、混乱を得るに読み込むときに、 Tensorflowをテストして後でロードしますか?
これを見てください:https://www.tensorflow。org/api_guides/python/meta_graph – BlooB