2017-11-01 14 views
0

パフォーマンスに関するPostgreSQL 9.6の助けが必要です。インデックスを使用したグループ化と内部結合のためのPostgreSQLでのクエリの最適化

CREATE TABLE invoice 
(
    id bigserial primary key, 
    some_field character varying(200) 
); 

CREATE TABLE invoice_item 
(
    id serial primary key, 
    invoice_id bigint, 
    article_number character varying(50), 
    quantity numeric(19,2) NOT NULL, 
    CONSTRAINT invoice_item_fk FOREIGN KEY (invoice_id) 
     REFERENCES invoice (id) MATCH SIMPLE 
     ON UPDATE NO ACTION ON DELETE NO ACTION 
); 
CREATE INDEX invoice_some_field_idx ON invoice (some_field); 

CREATE INDEX invoice_item_article_number_idx ON invoice_item (article_number); 

を次のように Iが持っているテーブルの非常に単純な例は、私は、請求書テーブルとinvoice_itemにおける150万の周り500 000行を使用しています。次のクエリを実行

がarticle_number上のインデックスを持つ

SELECT ii.article_number, 
     SUM(ii.quantity) 
FROM invoice i INNER JOIN 
    invoice_item ii 
    ON i.id = ii.invoice_id 
GROUP BY ii.article_number; 

本当に速いです、クエリは〜55 msに〜7秒です。

これで、親テーブルの列に対してgroup byを使用するときに問題が発生しました。

SELECT i.some_field, SUM(ii.quantity) 
FROM invoice i INNER JOIN 
    invoice_item ii 
    ON i.id = ii.invoice_id 
GROUP BY i.some_field; 

some_fieldにインデックスがあるかどうかにかかわらず、このクエリは同じ時間(約5秒)かかります。

私はここで非常に明白な何かが欠けているように感じます。

--- EDIT ----

私はこのクエリ計画に非常に新しいですし、上記の表でより多くのテストを行うときはもちろん、私は非常に異なる結果を実際のコードを比較して得ました。ここで

は、実際のテーブル定義を説明してクエリ1

CREATE TABLE receipt2 
(
    id serial NOT NULL, 
    version bigint NOT NULL, 
    store_number integer NOT NULL, 
    address1 character varying(200), 
    date_created timestamp without time zone NOT NULL, 
    round_off numeric(19,2) NOT NULL, 
    date_created_by_cash_register timestamp without time zone NOT NULL, 
    address2 character varying(200), 
    receipt_number integer NOT NULL, 
    application_version character varying(50), 
    control_box_serial_number_original character varying(200), 
    last_updated timestamp without time zone NOT NULL, 
    cash_register_user_id uuid NOT NULL, 
    control_code_copy character varying(200), 
    cash_register_number integer NOT NULL, 
    control_code_original character varying(200), 
    zip_code character varying(50), 
    receipt_footer character varying(20000), 
    phone_number character varying(50), 
    control_box_serial_number_copy character varying(200), 
    corporate_identity character varying(50) NOT NULL, 
    city character varying(200), 
    money_back numeric(19,2) NOT NULL, 
    number_of_copies_printed integer NOT NULL, 
    cash_register_user_username character varying(50) NOT NULL, 
    company_name character varying(200) NOT NULL, 
    email character varying(200), 
    website character varying(200), 
    CONSTRAINT receipt2_pkey PRIMARY KEY (id), 
    CONSTRAINT uk9f6f61365739562846c491f21efb UNIQUE (corporate_identity, store_number, cash_register_number, receipt_number) 
) 
WITH (
    OIDS=FALSE 
); 

CREATE INDEX receipt2_cash_register_user_id_idx 
    ON receipt2 USING btree (cash_register_user_id); 

CREATE INDEX receipt2_date_created_by_cash_register_idx 
    ON receipt2 USING btree (date_created_by_cash_register); 

CREATE INDEX receipt2_store_number_idx 
    ON receipt2 USING btree (store_number); 

CREATE INDEX receipt2corpidx 
    ON receipt2 USING btree (corporate_identity COLLATE pg_catalog."default"); 

CREATE INDEX receipt2corpstoreidx 
    ON receipt2 USING btree (store_number, corporate_identity COLLATE pg_catalog."default"); 

CREATE TABLE receipt_item2 
(
    id serial NOT NULL, 
    version bigint NOT NULL, 
    cost_excluding_vat numeric(19,2) NOT NULL, 
    account_number integer, 
    receipt_item_type character varying(255) NOT NULL, 
    article_group_id uuid, 
    supplier_number integer, 
    purchase_price_excluding_vat numeric(19,2) NOT NULL, 
    receipt_id bigint NOT NULL, 
    text character varying(20000), 
    promotion_id uuid, 
    price_including_vat numeric(19,2) NOT NULL, 
    discount_type character varying(255) NOT NULL, 
    profit_excluding_vat numeric(19,2) NOT NULL, 
    price_excluding_vat numeric(19,2) NOT NULL, 
    discount_amount_including_vat numeric(19,2) NOT NULL, 
    article_type character varying(255), 
    article_number character varying(50), 
    cost_including_vat numeric(19,2) NOT NULL, 
    purchase_cost_excluding_vat numeric(19,2) NOT NULL, 
    hidden boolean NOT NULL, 
    row_index integer NOT NULL, 
    quantity numeric(19,2) NOT NULL, 
    discount numeric(19,2) NOT NULL, 
    discount_amount_excluding_vat numeric(19,2) NOT NULL, 
    description character varying(200), 
    vat numeric(19,2) NOT NULL, 
    CONSTRAINT receipt_item2_pkey PRIMARY KEY (id), 
    CONSTRAINT fksohgmt8ntavcgj10ha2duc8lb FOREIGN KEY (receipt_id) 
     REFERENCES receipt2 (id) MATCH SIMPLE 
     ON UPDATE NO ACTION ON DELETE NO ACTION 
) 
WITH (
    OIDS=FALSE 
); 

CREATE INDEX receipt_item2_article_number_idx 
    ON receipt_item2 USING btree (article_number COLLATE pg_catalog."default"); 

です。これは非常に高速です。約55ms。

SELECT 
    article_number, 
    sum(quantity) AS "quantity", 
    sum(cost_excluding_vat) AS "costExcludingVat", 
    sum(cost_including_vat) AS "costIncludingVat", 
    sum(purchase_cost_excluding_vat) AS "purchaseCostExcludingVat", 
    sum(profit_excluding_vat) AS "profitExcludingVat" 
FROM receipt2 receipt INNER JOIN receipt_item2 receipt_item ON receipt.id = receipt_item.receipt_id 
WHERE 
    date_created_by_cash_register BETWEEN '2017-01-01' AND '2017-12-31' 
    AND receipt_item_type = 'ARTICLE' 
GROUP BY article_number 
LIMIT 100; 


"Limit (cost=0.85..4821.60 rows=100 width=167)" 
" -> GroupAggregate (cost=0.85..948001.24 rows=19665 width=167)" 
"  Group Key: receipt_item.article_number" 
"  -> Nested Loop (cost=0.85..925058.77 rows=1500000 width=35)" 
"    -> Index Scan using receipt_item2_article_number_idx on receipt_item2 receipt_item (cost=0.43..196242.77 rows=1500000 width=43)" 
"     Filter: ((receipt_item_type)::text = 'ARTICLE'::text)" 
"    -> Index Scan using receipt2_pkey on receipt2 receipt (cost=0.42..0.48 rows=1 width=4)" 
"     Index Cond: (id = receipt_item.receipt_id)" 
"     Filter: ((date_created_by_cash_register >= '2017-01-01 00:00:00'::timestamp without time zone) AND (date_created_by_cash_register <= '2017-12-31 00:00:00'::timestamp without time zone))" 

説明2を伴う説明。このクエリは、cash_register_user_idまたはnorにインデックスがあるかどうかに関係なく、2.3秒かかります。

SELECT 
    cash_register_user_id AS "userId", 
    sum(quantity) AS "quantity", 
    sum(cost_excluding_vat) AS "costExcludingVat", 
    sum(cost_including_vat) AS "costIncludingVat", 
    sum(purchase_cost_excluding_vat) AS "purchaseCostExcludingVat", 
    sum(profit_excluding_vat) AS "profitExcludingVat" 
FROM receipt2 receipt INNER JOIN receipt_item2 receipt_item ON receipt.id = receipt_id 
WHERE 
    date_created_by_cash_register BETWEEN '2017-01-01' AND '2017-12-31' 
    AND receipt_item_type = 'ARTICLE' 
    AND receipt.store_number = 1 
GROUP BY cash_register_user_id 
LIMIT 100; 

"Limit (cost=154761.00..154761.45 rows=20 width=176)" 
" -> HashAggregate (cost=154761.00..154761.45 rows=20 width=176)" 
"  Group Key: receipt.cash_register_user_id" 
"  -> Hash Join (cost=28135.00..132261.00 rows=1500000 width=44)" 
"    Hash Cond: (receipt_item.receipt_id = receipt.id)" 
"    -> Seq Scan on receipt_item2 receipt_item (cost=0.00..57133.00 rows=1500000 width=36)" 
"     Filter: ((receipt_item_type)::text = 'ARTICLE'::text)" 
"    -> Hash (cost=18955.00..18955.00 rows=500000 width=20)" 
"     -> Seq Scan on receipt2 receipt (cost=0.00..18955.00 rows=500000 width=20)" 
"       Filter: ((date_created_by_cash_register >= '2017-01-01 00:00:00'::timestamp without time zone) AND (date_created_by_cash_register <= '2017-12-31 00:00:00'::timestamp without time zone) AND (store_number = 1))" 

この質問には少しの話題がありますが、次の問題はそれを並べ替えることです。聖杯は、集計された価値の量やコストなどを並べ替えることができます。

+2

明白なことは、何が起こっているのかを見るために、両方のクエリの 'EXPLAIN(ANALYZE、BUFFERS)'出力です。 –

+0

そして 'article_number'にいくつのdistict値がありますか? – wildplasser

+0

@wildplasser、私は20,000種類のものを使用しましたが、生産には最大100,000まであります。 –

答えて

0

本当の答えは、実行計画を見ることです。しかし、これは何が起きているのかを知ることができます。基本的にのように書き換えることができ、最初のクエリ:

SELECT ii.article_number, SUM(ii.quantity) 
FROM invoice_item ii 
WHERE EXISTS (SELECT 1 FROM invoice i WHERE i.id = ii.invoice_id) 
GROUP BY ii.article_number; 

これは、順番に、invoice_item(article_number)にインデックスをスキャンすることによって解決することができます。この情報は、ハッシュやソートを行わずに各グループごとにコンパイルすることができます。各行のルックアップだけです。

第2のクエリでは、集計の作業を避けるために等価な方法はありません。

関連する問題