2017-02-03 5 views
2

私は英語文章の感情を計算するスタンフォードNLPのV3.6JAVA)を使用しています。スタンフォードNLP心理あいまいな結果

スタンフォードNLPは4

  • 0非常に負
  • 1負
  • 2中性
  • 3正
  • 4非常にポジティブ
から0から文章の極性を算出します

私はいくつかの非常に単純なテストケースを実行しましたが、その結果。

例:=ダビデは良い人で、感情= 2(すなわちニュートラル

  1. テキスト= JHONが良い人で、感情= 3(すなわち
  2. テキスト

上記の例では、文章は同じで、名前はDavid,Jhonですが、感想の値が異なります。 このあいまいさはありません

私は感情を計算するため、このJavaコードを使用:

public static float calSentiment(String text) { 

      // pipeline must get initialized before proceeding further 
      Properties props = new Properties(); 
      props.setProperty("annotators", "tokenize, ssplit, parse, sentiment"); 
      StanfordCoreNLP pipeline = new StanfordCoreNLP(props); 

      int mainSentiment = 0; 
      if (text != null && text.length() > 0) { 
       int longest = 0; 
       Annotation annotation = pipeline.process(text); 

       for (CoreMap sentence : annotation.get(CoreAnnotations.SentencesAnnotation.class)) { 
        Tree tree = sentence.get(SentimentCoreAnnotations.SentimentAnnotatedTree.class); 
        int sentiment = RNNCoreAnnotations.getPredictedClass(tree); 
        String partText = sentence.toString(); 

        if (partText.length() > longest) { 
         mainSentiment = sentiment; 
         longest = partText.length(); 
        } 
       } 
      } 
      if (mainSentiment > 4 || mainSentiment < 0) { 
       return -9999; 
      } 
      return mainSentiment; 

     } 

は、私は、Javaコードで何かをしないのですか?

私はまた、文が肯定的である場合には否定的な感情(すなわち、2未満)を、逆の場合は否定的な感情を得た。

ありがとうございました。感情の決定は訓練されたニューラルネットワークによって作られています

Sentence: Tendulkar is a great batsman 
Sentiment: 3 
Sentence: David is a great batsman 
Sentiment: 3 
Sentence: Tendulkar is not a great batsman 
Sentiment: 1 
Sentence: David is not a great batsman 
Sentiment: 2 
Sentence: Shyam is not a great batsman 
Sentiment: 1 
Sentence: Dhoni loves playing football 
Sentiment: 3 
Sentence: John, Julia loves playing football 
Sentiment: 3 
Sentence: Drake loves playing football 
Sentiment: 3 
Sentence: David loves playing football 
Sentiment: 2 
Sentence: Virat is a good boy 
Sentiment: 2 
Sentence: David is a good boy 
Sentiment: 2 
Sentence: Virat is not a good boy 
Sentiment: 1 
Sentence: David is not a good boy 
Sentiment: 2 
Sentence: I love every moment of life 
Sentiment: 3 
Sentence: I hate every moment of life 
Sentiment: 2 
Sentence: I like dancing and listening to music 
Sentiment: 3 
Sentence: Messi does not like to play cricket 
Sentiment: 1 
Sentence: This was the worst movie I have ever seen 
Sentiment: 0 
Sentence: I really appreciated the movie 
Sentiment: 1 
Sentence: I really appreciate the movie 
Sentiment: 3 
Sentence: Varun talks in a condescending way 
Sentiment: 2 
Sentence: Ram is angry he did not win the tournament 
Sentiment: 1 
Sentence: Today's dinner was awful 
Sentiment: 1 
Sentence: Johny is always complaining 
Sentiment: 3 
Sentence: Modi's demonetisation has been very controversial and confusing 
Sentiment: 1 
Sentence: People are left devastated by floods and droughts 
Sentiment: 2 
Sentence: Chahal did a fantastic job by getting the 6 wickets 
Sentiment: 3 
Sentence: England played terribly bad 
Sentiment: 1 
Sentence: Rahul Gandhi is a funny man 
Sentiment: 3 
Sentence: Always be grateful to those who are generous towards you 
Sentiment: 3 
Sentence: A friend in need is a friend indeed 
Sentiment: 3 
Sentence: Mary is a jubilant girl 
Sentiment: 2 
Sentence: There is so much of love and hatred in this world 
Sentiment: 3 
Sentence: Always be positive 
Sentiment: 3 
Sentence: Always be negative 
Sentiment: 1 
Sentence: Never be negative 
Sentiment: 1 
Sentence: Stop complaining and start doing something 
Sentiment: 2 
Sentence: He is a awesome thief 
Sentiment: 3 
Sentence: Ram did unbelievably well in this year's exams 
Sentiment: 2 
Sentence: This product is well designed and easy to use 
Sentiment: 3 
+1

バージョン3.7.0とPythonで同様の結果が得られません。私はこれがバグだと思う。 – sds

+0

https://github.com/stanfordnlp/CoreNLP/issues/351を参照してください。 – sds

答えて

0

以下は、私は簡単な英語の文章で得た結果です。残念なことに、あなたが同じ文章で提供する別の名前に基づいて、奇妙なことをしていますが、それは期待されています。 GitHubで説明したように、トレーニングデータにはさまざまな名前が頻繁に出現しない可能性があります。

関連する問題