Iは、(入力として::マット画像をOpenCVのCVを受け取り、テンソルに変換する)https://gist.github.com/kyrs/9adf86366e9e4f04addbのコードを取り、IはTensorflowチュートリアル(https://www.tensorflow.org/tutorials/image_recognition#usage_with_the_c_api)に記載されたモデルinception_v3_2016_08_28_frozen.pbで画像をラベル付けするために使用します。バッチサイズを2(またはそれ以上)に増やすと、 finalOutput(std :: vectorタイプ)のサイズはゼロになります。ここでTensorflowのC++ APIでBatchSizeを増やす方法は?
は、エラーを再現するコードです:
// Only for VisualStudio
#define COMPILER_MSVC
#define NOMINMAX
#include <string>
#include <iostream>
#include <fstream>
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/framework/tensor.h"
int batchSize = 2;
int height = 299;
int width = 299;
int depth = 3;
int mean = 0;
int stdev = 255;
// Set image paths
cv::String pathFilenameImg1 = "D:/IMGS/grace_hopper.jpg";
cv::String pathFilenameImg2 = "D:/IMGS/lenna.jpg";
// Set model paths
std::string graphFile = "D:/Tensorflow/models/inception_v3_2016_08_28_frozen.pb";
std::string labelfile = "D:/Tensorflow/models/imagenet_slim_labels.txt";
std::string InputName = "input";
std::string OutputName = "InceptionV3/Predictions/Reshape_1";
void read_prepare_image(cv::String pathImg, cv::Mat &imgPrepared) {
// Read Color image:
cv::Mat imgBGR = cv::imread(pathImg);
// Now we resize the image to fit Model's expected sizes:
cv::Size s(height, width);
cv::Mat imgResized;
cv::resize(imgBGR, imgResized, s, 0, 0, cv::INTER_CUBIC);
// Convert the image to float and normalize data:
imgResized.convertTo(imgPrepared, CV_32FC1);
imgPrepared = imgPrepared - mean;
imgPrepared = imgPrepared/stdev;
}
int main()
{
// Read and prepare images using OpenCV:
cv::Mat img1, img2;
read_prepare_image(pathFilenameImg1, img1);
read_prepare_image(pathFilenameImg2, img2);
// creating a Tensor for storing the data
tensorflow::Tensor input_tensor(tensorflow::DT_FLOAT, tensorflow::TensorShape({ batchSize, height, width, depth }));
auto input_tensor_mapped = input_tensor.tensor<float, 4>();
// Copy images data into the tensor:
for (int b = 0; b < batchSize; ++b) {
const float * source_data;
if (b == 0)
source_data = (float*)img1.data;
else
source_data = (float*)img2.data;
for (int y = 0; y < height; ++y) {
const float* source_row = source_data + (y * width * depth);
for (int x = 0; x < width; ++x) {
const float* source_pixel = source_row + (x * depth);
const float* source_B = source_pixel + 0;
const float* source_G = source_pixel + 1;
const float* source_R = source_pixel + 2;
input_tensor_mapped(b, y, x, 0) = *source_R;
input_tensor_mapped(b, y, x, 1) = *source_G;
input_tensor_mapped(b, y, x, 2) = *source_B;
}
}
}
// Load the graph:
tensorflow::GraphDef graph_def;
ReadBinaryProto(tensorflow::Env::Default(), graphFile, &graph_def);
// create a session with the graph
std::unique_ptr<tensorflow::Session> session_inception(tensorflow::NewSession(tensorflow::SessionOptions()));
session_inception->Create(graph_def);
// run the loaded graph
std::vector<tensorflow::Tensor> finalOutput;
session_inception->Run({ { InputName,input_tensor } }, { OutputName }, {}, &finalOutput);
// Get Top 5 classes:
std::cerr << "final output size = " << finalOutput.size() << std::endl;
tensorflow::Tensor output = std::move(finalOutput.at(0));
auto scores = output.flat<float>();
std::cerr << "scores size=" << scores.size() << std::endl;
std::ifstream label(labelfile);
std::string line;
std::vector<std::pair<float, std::string>> sorted;
for (unsigned int i = 0; i <= 1000; ++i) {
std::getline(label, line);
sorted.emplace_back(scores(i), line);
}
std::sort(sorted.begin(), sorted.end());
std::reverse(sorted.begin(), sorted.end());
std::cout << "size of the sorted file is " << sorted.size() << std::endl;
for (unsigned int i = 0; i< 5; ++i)
std::cout << "The output of the current graph has category " << sorted[i].second << " with probability " << sorted[i].first << std::endl;
}
は、私は何を欠場か?何か案は?
ありがとうございます!
thanks..it作品 –