2016-06-16 15 views
0

qを10個だけ入れると、出力は以下のようになります。pythonマルチプロセスでは、queue.putはサブプロセスをブロックします

if cnt>10: # kk's size is about 2000. 

Begin CountChangePercentMT1 at 2016-06-16 15:19:30.706000: 
end-in 0 2016-06-16 15:19:33.291000 
end-in 1 2016-06-16 15:19:34.990000 
end-in 2 2016-06-16 15:19:36.921000 
end 0 
end 1 
end 2 
end-in 3 2016-06-16 15:19:38.748000 
end 3 
End CountChangePercentMT1 at 2016-06-16 15:20:06.665000: 

Qに20件のデータを入れた場合、出力は以下のお気に入り:

if cnt>20: # kk's size is about 2000. 

Begin CountChangePercentMT1 at 2016-06-16 15:35:36.661000: 
end-in 0 2016-06-16 15:35:39.330000 
end-in 1 2016-06-16 15:35:40.954000 
end-in 2 2016-06-16 15:35:42.828000 
end 0 
end 1 
end 2 
end-in 3 2016-06-16 15:35:44.669000 

Qに50件のデータを入れた場合、出力は以下のお気に入り:

if cnt>50: # kk's size is about 2000. 

Begin CountChangePercentMT1 at 2016-06-16 15:36:54.518000: 
end-in 0 2016-06-16 15:36:57.583000 
end-in 1 2016-06-16 15:36:58.886000 
end-in 2 2016-06-16 15:37:00.757000 
end-in 3 2016-06-16 15:37:02.648000 
+0

私は私のpythonを知っていると思います(与えられた唯一のタグ)が、私はこの質問が何を話しているのか分かりませんし、システムに精通している人には意味があるかどうかも分かりません。これはPythonの上にいくつかのフレームワークですか? –

答えて

0
def do_somthing(q_out,q,i,trueStartDate,trueEndDate,preStartDate,allExistTables,stock_gainian): 
#Init conn 
conn = MySQLdb.connect(host='localhost',db='tushare',user='root',passwd='',port=3306,charset='UTF8') 
#Init df_Cc 
df_Cc = pd.DataFrame() 
df_Cc['ticker'] = pd.Series(dtype=numpy.int64,index=df_Cc.index) 
df_Cc['secShortName'] = pd.Series(dtype=numpy.object,index=df_Cc.index) 
df_Cc['percent'] = pd.Series(dtype=numpy.float64,index=df_Cc.index) 
df_Cc['startPrice'] = pd.Series(dtype=numpy.float64,index=df_Cc.index) 
df_Cc['endPrice'] = pd.Series(dtype=numpy.float64,index=df_Cc.index) 
df_Cc['startDate'] = pd.Series(dtype=numpy.object,index=df_Cc.index) 
df_Cc['endDate'] = pd.Series(dtype=numpy.object,index=df_Cc.index) 
df_Cc['gainian'] = pd.Series(dtype=numpy.object,index=df_Cc.index) 
df_Cc['shizhi'] = pd.Series(dtype=numpy.float64,index=df_Cc.index) 
df_Cc['liutong'] = pd.Series(dtype=numpy.float64,index=df_Cc.index) 
while True: 
    aa = q.get() 
    if aa != None: 
     ticker = aa[0] 
     secShortName = aa[1] 
     totalShares = aa[2] 
     nonrestfloatA = aa[3] 
     listDate = datetime.datetime.strptime(aa[4], "%Y-%m-%d") 
     stock_mktequd_name = '%s%06d' % (init.g_mktequd,ticker) 
     if (stock_mktequd_name in allExistTables) & (trueEndDate>=listDate>=trueStartDate)==False: 
      str = 'select * from %s where tradeDate>=\'%s\' and tradeDate<=\'%s\' order by tradeDate' % (stock_mktequd_name,trueStartDate.strftime("%Y-%m-%d"),trueEndDate.strftime("%Y-%m-%d")) 
      df = pd.read_sql(str,conn) 

      l = len(df_Cc) 
      df_Cc.at[l,'ticker'] = ticker 
      df_Cc.at[l,'secShortName'] = secShortName 
      nn = df.shape[0] 
      if nn>0: 
       # 
       startPrice = df.iloc[0]['preClosePrice']*GetQfq(ticker,preStartDate,conn) # if nn>=n else df.iloc[0]['preClosePrice']*1 
       endPrice = df.iloc[nn-1]['closePrice']*df.iloc[nn-1]['accumAdjFactor'] 
       percent = (endPrice-startPrice)/startPrice*100 # if startPrice!=0 else -100 
       df_Cc.at[l,'startDate'] = df.iloc[0]['tradeDate'] 
       df_Cc.at[l,'endDate'] = df.iloc[nn-1]['tradeDate'] 
       df_Cc.at[l,'percent'] = percent 
       df_Cc.at[l,'startPrice'] = startPrice 
       df_Cc.at[l,'endPrice'] = endPrice 
       df_gn = stock_gainian.query('ticker==%s' % ticker) 
       if df_gn.shape[0]==1: 
        df_Cc.at[l,'gainian'] = df_gn.iloc[0]['ref_gainian'] 
       df_Cc.at[l,'shizhi'] = totalShares*startPrice/100000000 
       df_Cc.at[l,'liutong'] = nonrestfloatA*startPrice/100000000 
    else: 
     break 

q_out.put(df_Cc) 
conn.close() 
print 'end-in %s %s' % (i,datetime.datetime.now()) 
関連する問題