これらのGLMMはどうして違うのですか?LME4 GLMMは、成功として構築されたときに異なります。試行と生データの比較
どちらもlme4で作成されていますが、どちらも同じデータを使用していますが、未加工精度データ(m1)を使用している間は、成功と試行(m1bin)という枠組みで囲まれています。 lme4が二項構造を生データから切り離して考えていると完全に間違っていましたか? (BRMSはうまくいっています。)私は今、分析の一部が変わることを恐れています。
d:
uniqueid dim incorrectlabel accuracy
1 A10LVHTF26QHQC:3X4MXAO0BGONT6U9HL2TG8P9YNBRW8 incidental marginal 0
2 A10LVHTF26QHQC:3X4MXAO0BGONT6U9HL2TG8P9YNBRW8 incidental extreme 1
3 A10LVHTF26QHQC:3X4MXAO0BGONT6U9HL2TG8P9YNBRW8 relevant marginal 1
4 A10LVHTF26QHQC:3X4MXAO0BGONT6U9HL2TG8P9YNBRW8 incidental marginal 1
5 A10LVHTF26QHQC:3X4MXAO0BGONT6U9HL2TG8P9YNBRW8 relevant marginal 0
6 A10LVHTF26QHQC:3X4MXAO0BGONT6U9HL2TG8P9YNBRW8 incidental marginal 0
dbin:
uniqueid dim incorrectlabel right count
<fctr> <fctr> <fctr> <int> <int>
1 A10LVHTF26QHQC:3X4MXAO0BGONT6U9HL2TG8P9YNBRW8 incidental extreme 3 3
2 A10LVHTF26QHQC:3X4MXAO0BGONT6U9HL2TG8P9YNBRW8 incidental marginal 1 5
3 A10LVHTF26QHQC:3X4MXAO0BGONT6U9HL2TG8P9YNBRW8 relevant extreme 3 4
4 A10LVHTF26QHQC:3X4MXAO0BGONT6U9HL2TG8P9YNBRW8 relevant marginal 3 4
5 A16HSMUJ7C7QA7:3DY46V3X3PI4B0HROD2HN770M46557 incidental extreme 3 4
6 A16HSMUJ7C7QA7:3DY46V3X3PI4B0HROD2HN770M46557 incidental marginal 2 4
> summary(m1bin)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial (logit)
Formula: cbind(right, count) ~ dim * incorrectlabel + (1 | uniqueid)
Data: dbin
AIC BIC logLik deviance df.resid
398.2 413.5 -194.1 388.2 151
Scaled residuals:
Min 1Q Median 3Q Max
-1.50329 -0.53743 0.08671 0.38922 1.28887
Random effects:
Groups Name Variance Std.Dev.
uniqueid (Intercept) 0 0
Number of obs: 156, groups: uniqueid, 39
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.48460 0.13788 -3.515 0.00044 ***
dimrelevant -0.13021 0.20029 -0.650 0.51562
incorrectlabelmarginal -0.15266 0.18875 -0.809 0.41863
dimrelevant:incorrectlabelmarginal -0.02664 0.27365 -0.097 0.92244
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) dmrlvn incrrc
dimrelevant -0.688
incrrctlblm -0.730 0.503
dmrlvnt:ncr 0.504 -0.732 -0.690
> summary(m1)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial (logit)
Formula: accuracy ~ dim * incorrectlabel + (1 | uniqueid)
Data: d
AIC BIC logLik deviance df.resid
864.0 886.2 -427.0 854.0 619
Scaled residuals:
Min 1Q Median 3Q Max
-1.3532 -1.0336 0.7524 0.9350 1.1514
Random effects:
Groups Name Variance Std.Dev.
uniqueid (Intercept) 0.04163 0.204
Number of obs: 624, groups: uniqueid, 39
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.140946 0.088242 1.597 0.1102
dim1 0.155923 0.081987 1.902 0.0572 .
incorrectlabel1 0.180156 0.081994 2.197 0.0280 *
dim1:incorrectlabel1 0.001397 0.082042 0.017 0.9864
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) dim1 incrr1
dim1 0.010
incrrctlbl1 0.128 0.006
dm1:ncrrct1 0.005 0.138 0.010
私は、彼らが同じになるはずと考えました。 BRMSの両方でモデリングすると、同じ見積もりで同じモデルが得られます。
これは絶対に正しかったです。私はまた、「混在」は自動的にコントラストを「contr.sum」に設定し、私の環境は「contr.treatment」に設定されていることを認識しました。 (10年後にもう1度、このミスをするつもりです。) – jtth