あなたはboolean indexing
と列A
のunique
値でループすることができます: - :
dfs = {x:df[df.A == x].reset_index(drop=True) for x in df.A.unique()}
print (dfs)
{'Meyer': A B
0 Meyer 2.0
1 Meyer 2.0, 'Radisch': A B
0 Radisch NaN, 'Mueller': A B
0 Mueller 4.0, 'Pavlenko': A B
0 Pavlenko NaN}
print (dfs.keys())
dict_keys(['Meyer', 'Radisch', 'Mueller', 'Pavlenko'])
print (dfs['Meyer'])
A B
0 Meyer 2.0
1 Meyer 2.0
print (dfs['Pavlenko'])
A B
0 Pavlenko NaN
df = pd.DataFrame([['Meyer', 2], ['Mueller', 4],
['Radisch', np.nan], ['Meyer', 2],
['Pavlenko', np.nan]])
df.columns = list("AB")
print (df)
A B
0 Meyer 2.0
1 Mueller 4.0
2 Radisch NaN
3 Meyer 2.0
4 Pavlenko NaN
print (df.A.unique())
['Meyer' 'Mueller' 'Radisch' 'Pavlenko']
for x in df.A.unique():
print(df[df.A == x])
A B
0 Meyer 2.0
3 Meyer 2.0
A B
1 Mueller 4.0
A B
2 Radisch NaN
A B
4 Pavlenko NaN
が続いdict
理解を使用しdictionary
DataFrames
のを取得
それはとてもうまくいった、ありがとう! –