私は、このプログラムをconnected components問題として定式化するのは非常に自然なことだと思います。具体的には、これにはboost::graph
を使用しました。
考え方は、行列の各エントリがノードであり、水平1と垂直1のエントリの間にエッジがあるグラフを作成することです。このようなグラフが作成されると、接続されたコンポーネントのアルゴリズムを実行し、最大のコンポーネントを見つけるだけです。
次のコードは、そう:
#include <iostream>
#include <vector>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/connected_components.hpp>
using namespace std;
using namespace boost;
int main()
{
vector<vector<int>> v{{1, 1, 0, 0, 0}, {0, 1, 1, 0, 0}, {0, 0, 1, 0, 1}, {1, 0, 0, 0, 1}, {0, 1, 0, 1, 1}};
typedef adjacency_list <vecS, vecS, undirectedS> graph;
graph g(v.size() * v.size());
// Populate the graph edges
for(size_t i = 0; i < v.size() - 1; ++i)
for(size_t j = 0; j < v[i].size() - 1; ++j)
{
if(v[i][j] == 1 && v[i + 1][j] == 1)
add_edge(i * v.size() + j, (i + 1) * v.size() + j, g);
else if(v[i][j] == 1 && v[i][j + 1] == 1)
add_edge(i * v.size() + j, i * v.size() + j + 1, g);
}
// Run the connected-components algorithm.
vector<int> component(num_vertices(g));
int num = connected_components(g, &component[0]);
// Print out the results.
std::vector<int>::size_type i;
for(i = 0; i != component.size(); ++i)
cout << "Vertex (" << i/v.size() << ", " << i % v.size() << ") is in component " << component[i] << endl;
cout << endl;
}
出力は、プログラムが5によって(寸法が5である場合)I、Jをコードすること
Vertex (0, 0) is in component 0
Vertex (0, 1) is in component 0
Vertex (0, 2) is in component 1
Vertex (0, 3) is in component 2
Vertex (0, 4) is in component 3
Vertex (1, 0) is in component 4
Vertex (1, 1) is in component 0
Vertex (1, 2) is in component 0
Vertex (1, 3) is in component 5
Vertex (1, 4) is in component 6
Vertex (2, 0) is in component 7
Vertex (2, 1) is in component 8
Vertex (2, 2) is in component 0
Vertex (2, 3) is in component 9
Vertex (2, 4) is in component 10
Vertex (3, 0) is in component 11
Vertex (3, 1) is in component 12
Vertex (3, 2) is in component 13
Vertex (3, 3) is in component 14
Vertex (3, 4) is in component 15
Vertex (4, 0) is in component 16
Vertex (4, 1) is in component 17
Vertex (4, 2) is in component 18
Vertex (4, 3) is in component 19
Vertex (4, 4) is in component 20
。注i + j。これは簡単に可逆的です。