単純な型のラムダ計算をCoqで形式化しようとしています。空のコンテキストは空です。単純型のラムダ計算の閉じた項の自由変数の帰納仮説
これは正式化の関連部分です。
Require Import Coq.Arith.Arith.
Require Import Coq.MSets.MSets.
Require Import Coq.FSets.FMaps.
Inductive type : Set :=
| tunit : type
| tfun : type -> type -> type.
Module Var := Nat.
Definition var : Set := Var.t.
Module VarSet := MSetAVL.Make Var.
Module VarSetFacts := MSetFacts.Facts VarSet.
Module VarSetProps := MSetProperties.Properties VarSet.
Module Context := FMapWeakList.Make Var.
Module ContextFacts := FMapFacts.Facts Context.
Module ContextProps := FMapFacts.Properties Context.
Definition context := Context.t type.
Definition context_empty : context := Context.empty type.
Inductive expr : Set :=
| eunit : expr
| evar : var -> expr
| eabs : var -> type -> expr -> expr
| eapp : expr -> expr -> expr.
Fixpoint free_vars (e : expr) : VarSet.t :=
match e with
| eunit => VarSet.empty
| evar y => VarSet.singleton y
| eabs y _ e => VarSet.remove y (free_vars e)
| eapp e1 e2 => VarSet.union (free_vars e1) (free_vars e2)
end.
Inductive has_type : context -> expr -> type -> Prop :=
| has_type_unit : forall c,
has_type c eunit tunit
| has_type_var : forall c x t,
Context.find x c = Some t ->
has_type c (evar x) t
| has_type_abs : forall c x t1 t2 e,
has_type (Context.add x t1 c) e t2 ->
has_type c (eabs x t1 e) (tfun t1 t2)
| has_type_app : forall c e1 e2 t1 t2,
has_type c e1 (tfun t1 t2) ->
has_type c e2 t1 ->
has_type c (eapp e1 e2) t2.
Check has_type_ind.
Lemma has_type_empty_context_free_vars : forall e t,
has_type context_empty e t ->
VarSet.Empty (free_vars e).
Proof.
intros e t H.
remember context_empty as c.
induction H; subst.
- apply VarSet.empty_spec.
- rewrite ContextFacts.empty_o in H.
congruence.
- simpl.
admit. (* Wrong induction hypothesis *)
- simpl.
rewrite VarSetProps.empty_union_1; auto.
Admitted.
私の帰納仮説は間違っているようです。仮説が偽であるので、単に
Context.add x t1 context_empty = context_empty ->
VarSet.Empty (free_vars e)
と言います。私は、表現の上に誘導を試み、正しい帰納仮説を得るために定理を再定式化しましたが、それを理解できませんでした。
このプロパティを定義して証明する正しい方法は何ですか?
ソリューション
はejgallegoさんのコメントへのイヴanswerと感謝の後、私は最初に一般化補題を証明しました。
Lemma has_type_free_vars_in_context : forall c e t,
has_type c e t ->
VarSet.For_all (fun x => Context.mem x c = true) (free_vars e).
Proof.
intros c e t H.
induction H; simpl.
- intros x contra.
apply VarSetFacts.empty_iff in contra.
inversion contra.
- intros y H2.
apply Context.mem_1.
apply ContextFacts.in_find_iff.
apply VarSet.singleton_spec in H2.
subst.
rewrite H.
discriminate.
- intros y H2.
unfold VarSet.For_all in *.
apply VarSet.remove_spec in H2 as [H2 H3].
specialize (IHhas_type y H2).
rewrite ContextFacts.add_neq_b in IHhas_type; auto.
- intros x H2.
apply VarSet.union_spec in H2 as [H2 | H2]; auto.
Qed.
そして私の定理を証明するために使用されました。
Lemma has_type_empty_context_free_vars : forall e t,
has_type context_empty e t ->
VarSet.Empty (free_vars e).
Proof.
intros e t H.
apply has_type_free_vars_in_context in H.
induction (free_vars e) using VarSetProps.set_induction.
- assumption.
- rename t0_1 into s.
rename t0_2 into s'.
apply VarSetProps.Add_Equal in H1.
unfold VarSet.For_all in *.
specialize (H x).
rewrite H1 in H.
specialize (H (VarSetFacts.add_1 s eq_refl)).
Search (Context.empty).
rewrite ContextFacts.empty_a in H.
discriminate.
Qed.
これで機能します。どうもありがとうございました。より多くの自動化、読みやすさ、メンテナンス性向上のためにこのソリューションをリファクタリングする方法はありますか?
'Search_VarSet.For_all.'はあなたに助けを与えるでしょう。とにかく定義は直接利用可能です。' For_all P s:= forall x:elt、x \ s - > P x 'のメンバーシップの証明があれば、 'P x'を直接得ることができます。 – ejgallego
ありがとうございます、今すぐ動作します。証明を改善するためのアドバイスがありますか? – authchir