私は人工知能の問題でしばらく働いていましたが、今週はAIをコーディングしてPythonに接続しようとしました。Connect 4 Alpha-beta pruningが失敗する可能性があります:(
最後に、私はアルファベータプルーニングアルゴリズムを作成することができましたが、それは正常に動作しますが、次に、オンラインアルファベータプルーニングアルゴを深さ8深さでテストしました。 6と驚いたことに私のアルゴリズムは失われました。ハーバードのインストラクターと評価関数を作成し、msavenskiのコードからアルファベータを修正しました。(リンクはコードにあります)
これらのプロ私のalgoと評価関数が間違いがあると確信しているので、期待通りに機能しているかどうかをもっと長く確認してください。私は、コードをより速くより効果的にするために、トランジションテーブルやディープイタレーションなどを使うことができることを知っていますが、私の他の目標はそれを単純に保つことです。
は、ここに私のコードです:
# -*- coding: utf-8 -*-
import copy
class ConnectFour:
def __init__(self):
self.moves = 0 #The count of moves, 42 moves is equal than board is full
self.turn = 0 #Use this variable to recognize which one player turn is it
def PrintGameBoard(self, board):
print(' 0 1 2 3 4 5 6') # This function just raws a board
for i in range(5, -1, -1):
print('|---|---|---|---|---|---|---|')
print("| ",end="")
for j in range(7):
print(board[i][j],end="")
if j != 6:
print(" | ",end="")
else:
print(" |")
print('`---------------------------´')
def LegalRow(self, col, board):
stacks = [[x[i] for x in board] for i in range(len(board[0]))] # This function checks stack of given column and return the row where you can draw mark. If the stack is full return -1
countofitems = stacks[col].count("x") + stacks[col].count("o") # count of items in stack
if (countofitems) < 6:
return (countofitems)
else:
return -1
def LegalMoves(self, board):
legalmoves = []
stacks = [[x[i] for x in board] for i in range(len(board[0]))]
order = [3,2,4,1,5,0,6]
for i in order:
if self.LegalRow(i, board)!=-1:
legalmoves.append(i)
return legalmoves
def MakeMove(self, board, col, player, row):
board[row][col] = player # This function make a move and increases count of moves
self.moves += 1
return board
def UnmakeMove(self, board, col, row):
board[row][col] = " " # This function make a move and increases count of moves
self.moves -= 1
return board
def IsWinning(self, currentplayer, board):
for i in range(6): # This function returns True or False depending on if current player have four "tila" in a row (win)
for j in range(4):
if board[i][j] == currentplayer and board[i][j+1] == currentplayer and board[i][j+2] == currentplayer and board[i][j+3] == currentplayer:
return True
for i in range(3):
for j in range(7):
if board[i][j] == currentplayer and board[i+1][j] == currentplayer and board[i+2][j] == currentplayer and board[i+3][j] == currentplayer:
return True
for i in range(3):
for j in range(4):
if board[i][j] == currentplayer and board[i+1][j+1] == currentplayer and board[i+2][j+2] == currentplayer and board[i+3][j+3] == currentplayer:
return True
for i in range(3,6):
for j in range(4):
if board[i][j] == currentplayer and board[i-1][j+1] == currentplayer and board[i-2][j+2] == currentplayer and board[i-3][j+3] == currentplayer:
return True
return False
def PlayerMove(self, board, player):
allowedmove = False # This function ask players move when its his turn and returns board after making move.
while not allowedmove:
try:
print("Choose a column where you want to make your move (0-6): ",end="")
col =input()
col=int(col)
row = self.LegalRow(col, board)
except (NameError, ValueError, IndexError, TypeError, SyntaxError) as e:
print("Give a number as an integer between 0-6!")
else:
if row != -1 and (col<=6 and col>=0):
board[row][int(col)] = player
self.moves += 1
allowedmove = True
elif col>6 or col<0:
print("The range was 0-6!!!")
else:
print("This column is full")
return board
def SwitchPlayer(self, player): # This function gives opponent player's mark
if player=="x":
nextplayer="o"
else:
nextplayer="x"
return nextplayer
def evaluation(self, board): # This function evaluate gameboard (heuristic). The rules of evaluation are in site: http://isites.harvard.edu/fs/docs/icb.topic788088.files/Assignment%203/asst3c.pdf
list = []
player = "x"
opponent = "o"
if self.IsWinning(player, board):
score = -512
elif self.IsWinning(opponent, board):
score = +512
elif self.moves==42:
score=0
else:
score = 0
for i in range(6): #append to list horizontal segments
for j in range(4):
list.append([str(board[i][j]),str(board[i][j+1]),str(board[i][j+2]),str(board[i][j+3])])
for i in range(3): #append to list vertical segments
for j in range(7):
list.append([str(board[i][j]),str(board[i+1][j]),str(board[i+2][j]),str(board[i+3][j])])
for i in range(3): #append to list diagonal segments
for j in range(4):
list.append([str(board[i][j]),str(board[i+1][j+2]),str(board[i+2][j+2]),str(board[i+3][j+3])])
for i in range(3, 6): #append to list diagonal segments
for j in range(4):
list.append([str(board[i][j]),str(board[i-1][j+2]),str(board[i-2][j+2]),str(board[i-3][j+3])])
for k in range(len(list)): #add to score with rules of site above
if ((list[k].count(str("x"))>0) and (list[k].count(str("o"))>0)) or list[k].count(" ")==4:
score += 0
if list[k].count(player)==1 and list[k].count(opponent)==0:
score -= 1
if list[k].count(player)==2 and list[k].count(opponent)==0:
score -= 10
if list[k].count(player)==3 and list[k].count(opponent)==0:
score -= 50
if list[k].count(opponent)==1 and list[k].count(player)==0:
score += 1
if list[k].count(opponent)==2 and list[k].count(player)==0:
score += 10
if list[k].count(opponent)==3 and list[k].count(player)==0:
score += 50
if self.turn==player:
score -= 16
else:
score += 16
return score
def maxfunction(self, board, depth, player, alpha, beta):
opponent = self.SwitchPlayer(player)
self.turn = opponent
legalmoves = self.LegalMoves(board)
if (depth==0) or self.moves==42:
return self.evaluation(board)
value=-1000000000
for col in legalmoves:
row = self.LegalRow(col, board)
newboard = self.MakeMove(board, col, opponent, row)
value = max(value, self.minfunction(board, depth-1, opponent,alpha, beta))
newboard = self.UnmakeMove(board, col, row)
if value >= beta:
return value
alpha = max(alpha, value)
return value
def minfunction(self, board, depth, opponent, alpha, beta):
player = self.SwitchPlayer(opponent)
self.turn = player
legalmoves = self.LegalMoves(board)
if (depth==0) or self.moves==42:
return evaluation(board)
value=1000000000
for col in legalmoves:
row = self.LegalRow(col, board)
newboard = self.MakeMove(board, col, player, row)
value = min(value, self.maxfunction(board, depth-1, player ,alpha, beta))
newboard = self.UnmakeMove(board, col, row)
if value <= alpha:
return value
beta = min(beta, value)
return value
def alphabetapruning(self, board, depth, opponent, alpha, beta): #This is the alphabeta-function modified from: https://github.com/msaveski/connect-four
values = []
cols = []
value = -1000000000
for col in self.LegalMoves(board):
row = self.LegalRow(col, board)
board = self.MakeMove(board, col, opponent, row)
value = max(value, self.minfunction(board, depth-1, opponent, alpha, beta))
values.append(value)
cols.append(col)
board = self.UnmakeMove(board, col, row)
largestvalue= max(values)
print(cols)
print(values)
for i in range(len(values)):
if largestvalue==values[i]:
position = cols[i]
return largestvalue, position
def searchingfunction(self, board, depth, opponent):
#This function update turn to opponent and calls alphabeta (main algorithm) and after that update new board (add alphabeta position to old board) and returns new board.
newboard = copy.deepcopy(board)
value, position=self.alphabetapruning(newboard, depth, opponent, -10000000000, 10000000000)
board = self.MakeMove(board, position, opponent, self.LegalRow(position, board))
return board
def PlayerGoesFirst():
print("Player is X and AI is O") #This function just ask who goes first
player = 'x'
opponent = 'o'
print('Do you want to play first? (y/n) : ',end="")
return input().lower().startswith('y')
def PlayAgain():
print('Do you want to play again? (y/n) :',end="") #This function ask if player want to play new game
return input().lower().startswith('y')
def main():
print("Connect4") #The main function. This ask player mark, initialize gameboard (table), print board after each turn, ask players move, make AI's move and checks after each move is game is tie/win or lose.
print("-"*34)
while True:
connectfour = ConnectFour()
gameisgoing = True
table = [[],[],[],[],[],[]]
for i in range(7):
for j in range(6):
table[j].append(" ")
player = "x"
opponent = "o"
if PlayerGoesFirst():
turn = "x"
else:
turn = "o"
while gameisgoing:
connectfour.PrintGameBoard(table)
if turn=="x":
table = connectfour.PlayerMove(table, player)
if connectfour.IsWinning(player, table):
connectfour.PrintGameBoard(table)
print('You won the game!')
gameisgoing = False
else:
if connectfour.moves==42:
connectfour.PrintGameBoard(table)
print('Game is tie')
gameisgoing=False
else:
turn = "o"
else:
table = connectfour.searchingfunction(table, 6, opponent) #Here is AI's move. Takes as input current table (board), depth and opponents mark. Output should be new gameboard with AI's move.
if connectfour.IsWinning(opponent, table):
connectfour.PrintGameBoard(table)
print('Computer won the game')
gameisgoing = False
else:
if connectfour.moves==42:
connectfour.PrintGameBoard(table)
print('Game is tie')
gameisgoing=False
else:
turn = "x"
if not PlayAgain():
print("Game ended")
print("-"*34)
break
if __name__ == '__main__':
main()
はい、あなたはdeepcopyを使用する必要があると言っていました –
私のアルゴリズムは正しいと思っていますが、評価機能だけでは十分強力ではありません。誰かがこの主張を確認できますか? –