2017-09-28 11 views
0

pythonでKITTIデータセットを視覚化するためにpykittiパッケージを使用しています。必要なキャリブレーションファイルの検索に問題があります。指定されたディレクトリでこれらの校正ファイルを探します。これらのファイルを探すディレクトリを指定しました。しかし、それはまだ私にエラーを与える: FileNotFoundError:[errnoを2]いいえそのようなファイルまたはディレクトリ:「/home/spb5151/Downloads/KITTI_Data/2011_09_26/calib_imu_to_velo.txt」python pykittiパッケージを使用してディレクトリ内のファイルが見つかりません

をそれは上で立ち往生だと述べています私のコードでopen(filepath、 'r')行を書きます。しかし、このファイルがこのディレクトリにあることを確認しました。私はPycharmをLinux上の私のIDEとして使用しています。私はPythonとLinuxには新しいので、私は行方不明になる可能性のある構文がありますか?

import sys 
sys.path.insert(0, '/home/spb5151/Documents/pykitti-master') 

import pykitti 

basedir = '/home/spb5151/Downloads/KITTI_Data' 
date = '2011_09_26' 
drive = '0019' 

# The 'frames' argument is optional - default: None, which loads the whole dataset. 
# Calibration and timestamp data are read automatically. 
# Other sensor data (cameras, IMU, Velodyne) are available via properties 
# that create generators when accessed. 
data = pykitti.raw(basedir, date, drive, frames=range(0, 50, 5)) 

# dataset.calib:  Calibration data are accessible as a named tuple 
# dataset.timestamps: Timestamps are parsed into a list of datetime objects 
# dataset.oxts:  Returns a generator that loads OXTS packets as named tuples 
# dataset.camN:  Returns a generator that loads individual images from camera N 
# dataset.gray:  Returns a generator that loads monochrome stereo pairs (cam0, cam1) 
# dataset.rgb:  Returns a generator that loads RGB stereo pairs (cam2, cam3) 
# dataset.velo:  Returns a generator that loads velodyne scans as [x,y,z,reflectance] 

point_velo = np.array([0,0,0,1]) 
point_cam0 = data.calib.T_cam0_velo.dot(point_velo) 

point_imu = np.array([0,0,0,1]) 
point_w = [o.T_w_imu.dot(point_imu) for o in data.oxts] 

for cam0_image in data.cam0: 
    pass 

rgb_iterator = data.rgb # Assign the generator so it doesn't 
cam2_image, cam3_image = next(rgb_iterator) 

そして、ここで彼らは、それはあなたのデータを考慮していないように、この部分をハードコードしているように見えたいくつかの理由でpykittiパッケージに含まれているraw.pyファイル

"""Provides 'raw', which loads and parses raw KITTI data.""" 

import datetime as dt 
import glob 
import os 
from collections import namedtuple 

import numpy as np 

import pykitti.utils as utils 

__author__ = "Lee Clement" 
__email__ = "[email protected]" 


class raw: 
    """Load and parse raw data into a usable format.""" 

    def __init__(self, base_path, date, drive, **kwargs): 
     """Set the path and pre-load calibration data and timestamps.""" 
     self.drive = date + '_drive_' + drive + '_sync' 
     self.calib_path = os.path.join(base_path, date) 
     self.data_path = os.path.join(base_path, date, self.drive) 
     self.frames = kwargs.get('frames', None) 

     # Setting imformat='cv2' will convert the images to uint8 and BGR for 
     # easy use with OpenCV. 
     self.imformat = kwargs.get('imformat', None) 

     # Pre-load data that isn't returned as a generator 
     self._load_calib() 
     self._load_timestamps() 

    def __len__(self): 
     """Return the number of frames loaded.""" 
     return len(self.timestamps) 

    @property 
    def oxts(self): 
     """Generator to read OXTS data from file.""" 
     # Find all the data files 
     oxts_path = os.path.join(self.data_path, 'oxts', 'data', '*.txt') 
     oxts_files = sorted(glob.glob(oxts_path)) 

     # Subselect the chosen range of frames, if any 
     if self.frames is not None: 
      oxts_files = [oxts_files[i] for i in self.frames] 

     # Return a generator yielding OXTS packets and poses 
     return utils.get_oxts_packets_and_poses(oxts_files) 

    @property 
    def cam0(self): 
     """Generator to read image files for cam0 (monochrome left).""" 
     impath = os.path.join(self.data_path, 'image_00', 'data', '*.png') 
     imfiles = sorted(glob.glob(impath)) 
     # Subselect the chosen range of frames, if any 
     if self.frames is not None: 
      imfiles = [imfiles[i] for i in self.frames] 

     # Return a generator yielding the images 
     return utils.get_images(imfiles, self.imformat) 

    @property 
    def cam1(self): 
     """Generator to read image files for cam1 (monochrome right).""" 
     impath = os.path.join(self.data_path, 'image_01', 'data', '*.png') 
     imfiles = sorted(glob.glob(impath)) 
     # Subselect the chosen range of frames, if any 
     if self.frames is not None: 
      imfiles = [imfiles[i] for i in self.frames] 

     # Return a generator yielding the images 
     return utils.get_images(imfiles, self.imformat) 

    @property 
    def cam2(self): 
     """Generator to read image files for cam2 (RGB left).""" 
     impath = os.path.join(self.data_path, 'image_02', 'data', '*.png') 
     imfiles = sorted(glob.glob(impath)) 
     # Subselect the chosen range of frames, if any 
     if self.frames is not None: 
      imfiles = [imfiles[i] for i in self.frames] 

     # Return a generator yielding the images 
     return utils.get_images(imfiles, self.imformat) 

    @property 
    def cam3(self): 
     """Generator to read image files for cam0 (RGB right).""" 
     impath = os.path.join(self.data_path, 'image_03', 'data', '*.png') 
     imfiles = sorted(glob.glob(impath)) 
     # Subselect the chosen range of frames, if any 
     if self.frames is not None: 
      imfiles = [imfiles[i] for i in self.frames] 

     # Return a generator yielding the images 
     return utils.get_images(imfiles, self.imformat) 

    @property 
    def gray(self): 
     """Generator to read monochrome stereo pairs from file. 
     """ 
     return zip(self.cam0, self.cam1) 

    @property 
    def rgb(self): 
     """Generator to read RGB stereo pairs from file. 
     """ 
     return zip(self.cam2, self.cam3) 

    @property 
    def velo(self): 
     """Generator to read velodyne [x,y,z,reflectance] scan data from binary files.""" 
     # Find all the Velodyne files 
     velo_path = os.path.join(
      self.data_path, 'velodyne_points', 'data', '*.bin') 
     velo_files = sorted(glob.glob(velo_path)) 

     # Subselect the chosen range of frames, if any 
     if self.frames is not None: 
      velo_files = [velo_files[i] for i in self.frames] 

     # Return a generator yielding Velodyne scans. 
     # Each scan is a Nx4 array of [x,y,z,reflectance] 
     return utils.get_velo_scans(velo_files) 

    def _load_calib_rigid(self, filename): 
     """Read a rigid transform calibration file as a numpy.array.""" 
     filepath = os.path.join(self.calib_path, filename) 
     data = utils.read_calib_file(filepath) 
     return utils.transform_from_rot_trans(data['R'], data['T']) 


    def _load_calib_cam_to_cam(self, velo_to_cam_file, cam_to_cam_file): 
     # We'll return the camera calibration as a dictionary 
     data = {} 

     # Load the rigid transformation from velodyne coordinates 
     # to unrectified cam0 coordinates 
     T_cam0unrect_velo = self._load_calib_rigid(velo_to_cam_file) 

     # Load and parse the cam-to-cam calibration data 
     cam_to_cam_filepath = os.path.join(self.calib_path, cam_to_cam_file) 
     filedata = utils.read_calib_file(cam_to_cam_filepath) 

     # Create 3x4 projection matrices 
     P_rect_00 = np.reshape(filedata['P_rect_00'], (3, 4)) 
     P_rect_10 = np.reshape(filedata['P_rect_01'], (3, 4)) 
     P_rect_20 = np.reshape(filedata['P_rect_02'], (3, 4)) 
     P_rect_30 = np.reshape(filedata['P_rect_03'], (3, 4)) 

     data['P_rect_00'] = P_rect_00 
     data['P_rect_10'] = P_rect_10 
     data['P_rect_20'] = P_rect_20 
     data['P_rect_30'] = P_rect_30 


     # Create 4x4 matrices from the rectifying rotation matrices 
     R_rect_00 = np.eye(4) 
     R_rect_00[0:3, 0:3] = np.reshape(filedata['R_rect_00'], (3, 3)) 
     R_rect_10 = np.eye(4) 
     R_rect_10[0:3, 0:3] = np.reshape(filedata['R_rect_01'], (3, 3)) 
     R_rect_20 = np.eye(4) 
     R_rect_20[0:3, 0:3] = np.reshape(filedata['R_rect_02'], (3, 3)) 
     R_rect_30 = np.eye(4) 
     R_rect_30[0:3, 0:3] = np.reshape(filedata['R_rect_03'], (3, 3)) 

     data['R_rect_00'] = R_rect_00 
     data['R_rect_10'] = R_rect_10 
     data['R_rect_20'] = R_rect_20 
     data['R_rect_30'] = R_rect_30 

     # Compute the rectified extrinsics from cam0 to camN 
     T0 = np.eye(4) 
     T0[0, 3] = P_rect_00[0, 3]/P_rect_00[0, 0] 
     T1 = np.eye(4) 
     T1[0, 3] = P_rect_10[0, 3]/P_rect_10[0, 0] 
     T2 = np.eye(4) 
     T2[0, 3] = P_rect_20[0, 3]/P_rect_20[0, 0] 
     T3 = np.eye(4) 
     T3[0, 3] = P_rect_30[0, 3]/P_rect_30[0, 0] 

     # Compute the velodyne to rectified camera coordinate transforms 
     data['T_cam0_velo'] = T0.dot(R_rect_00.dot(T_cam0unrect_velo)) 
     data['T_cam1_velo'] = T1.dot(R_rect_00.dot(T_cam0unrect_velo)) 
     data['T_cam2_velo'] = T2.dot(R_rect_00.dot(T_cam0unrect_velo)) 
     data['T_cam3_velo'] = T3.dot(R_rect_00.dot(T_cam0unrect_velo)) 

     # Compute the camera intrinsics 
     data['K_cam0'] = P_rect_00[0:3, 0:3] 
     data['K_cam1'] = P_rect_10[0:3, 0:3] 
     data['K_cam2'] = P_rect_20[0:3, 0:3] 
     data['K_cam3'] = P_rect_30[0:3, 0:3] 

     # Compute the stereo baselines in meters by projecting the origin of 
     # each camera frame into the velodyne frame and computing the distances 
     # between them 
     p_cam = np.array([0, 0, 0, 1]) 
     p_velo0 = np.linalg.inv(data['T_cam0_velo']).dot(p_cam) 
     p_velo1 = np.linalg.inv(data['T_cam1_velo']).dot(p_cam) 
     p_velo2 = np.linalg.inv(data['T_cam2_velo']).dot(p_cam) 
     p_velo3 = np.linalg.inv(data['T_cam3_velo']).dot(p_cam) 

     data['b_gray'] = np.linalg.norm(p_velo1 - p_velo0) # gray baseline 
     data['b_rgb'] = np.linalg.norm(p_velo3 - p_velo2) # rgb baseline 

     return data 

    def _load_calib(self): 
     """Load and compute intrinsic and extrinsic calibration parameters.""" 
     # We'll build the calibration parameters as a dictionary, then 
     # convert it to a namedtuple to prevent it from being modified later 
     data = {} 

     # Load the rigid transformation from velodyne to IMU 
     data['T_velo_imu'] = self._load_calib_rigid('calib_imu_to_velo.txt') 

     # Load the camera intrinsics and extrinsics 
     data.update(self._load_calib_cam_to_cam(
      'calib_velo_to_cam.txt', 'calib_cam_to_cam.txt')) 

     # Pre-compute the IMU to rectified camera coordinate transforms 
     data['T_cam0_imu'] = data['T_cam0_velo'].dot(data['T_velo_imu']) 
     data['T_cam1_imu'] = data['T_cam1_velo'].dot(data['T_velo_imu']) 
     data['T_cam2_imu'] = data['T_cam2_velo'].dot(data['T_velo_imu']) 
     data['T_cam3_imu'] = data['T_cam3_velo'].dot(data['T_velo_imu']) 

     self.calib = namedtuple('CalibData', data.keys())(*data.values()) 

    def _load_timestamps(self): 
     """Load timestamps from file.""" 
     timestamp_file = os.path.join(
      self.data_path, 'oxts', 'timestamps.txt') 

     # Read and parse the timestamps 
     self.timestamps = [] 
     with open(timestamp_file, 'r') as f: 
      for line in f.readlines(): 
       # NB: datetime only supports microseconds, but KITTI timestamps 
       # give nanoseconds, so need to truncate last 4 characters to 
       # get rid of \n (counts as 1) and extra 3 digits 
       t = dt.datetime.strptime(line[:-4], '%Y-%m-%d %H:%M:%S.%f') 
       self.timestamps.append(t) 

     # Subselect the chosen range of frames, if any 
     if self.frames is not None: 
      self.timestamps = [self.timestamps[i] for i in self.frames] 
+0

ここにコードスニペットを貼り付けることはできますか? – ShreyasG

+0

元の投稿を編集してコードを追加しました。 – sbayley

答えて

0

なるほど、ですパス。ここで犯人だ:あなたのraw.pyファイルのこの行の

data['T_velo_imu'] = self._load_calib_rigid('calib_imu_to_velo.txt') 

検索し、それが正しい道に行くことを確認するDATA_PATH +ファイルとファイルを置き換えます。

+0

github/supportページでこれをフラグすることもできます – ShreyasG

+0

私はちょうどコード行に行き、修正を試みましたが、まだそのようなファイルがないと言っています。私はパスをハードコーディングしようとしたが、どちらもうまくいきませんでした。まだその名前のファイルがないと言っています。 – sbayley

関連する問題