これは、UDFを使用して行うことができます。
import spark.implicits._
import org.apache.spark.sql.functions._
import org.apache.spark.sql.Row
// Sample data:
val df = Seq(
("id1", "t1", Array(("n1", 4L), ("n2", 5L))),
("id2", "t2", Array(("n3", 6L), ("n4", 7L)))
).toDF("ID", "Time", "Items")
// Create UDF converting array of (String, Long) structs to Map[String, Long]
val arrayToMap = udf[Map[String, Long], Seq[Row]] {
array => array.map { case Row(key: String, value: Long) => (key, value) }.toMap
}
// apply UDF
val result = df.withColumn("Items", arrayToMap($"Items"))
result.show(false)
// +---+----+---------------------+
// |ID |Time|Items |
// +---+----+---------------------+
// |id1|t1 |Map(n1 -> 4, n2 -> 5)|
// |id2|t2 |Map(n3 -> 6, n4 -> 7)|
// +---+----+---------------------+
私は(唯一のスパークの組み込み関数を使用して)UDFせずにこれを行う方法を参照することはできません。