GPUのトルク割り当てに奇妙な問題があります。CUDA_VISIBLE_DEVICESが0でなければトルクジョブでGPUが見つかりません
2台のNVIDIA GTX Titan X GPUを搭載した1台のマシンでTorque 6.1.0を実行しています。私はスケジューリングのためにpbs_schedを使用しています。次のように安静時のnvidia-SMI出力は次のとおりです。
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 375.39 Driver Version: 375.39 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX TIT... Off | 0000:03:00.0 On | N/A |
| 22% 40C P8 15W/250W | 0MiB/12204MiB | 0% E. Process |
+-------------------------------+----------------------+----------------------+
| 1 GeForce GTX TIT... Off | 0000:04:00.0 Off | N/A |
| 22% 33C P8 14W/250W | 0MiB/12207MiB | 0% E. Process |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
私は次のようにGPUの割り当てを評価するために、簡単なテストスクリプトを持っている:
#PBS -S /bin/bash
#PBS -l nodes=1:ppn=1:gpus=1:reseterr:exclusive_process
echo "CUDA_VISIBLE_DEVICES: $CUDA_VISIBLE_DEVICES"
~/test/NVIDIA_CUDA-8.0_Samples/bin/x86_64/linux/release/deviceQuery
DEVICEQUERYは、CUDAに付属しているユーティリティです。コマンドラインから実行すると、両方のGPUが正しく検出されます。私はこのようなコマンドラインから一つのデバイスに制限すると...
CUDA_VISIBLE_DEVICES=0 ~/test/NVIDIA_CUDA-8.0_Samples/bin/x86_64/linux/release/deviceQuery
#or
CUDA_VISIBLE_DEVICES=1 ~/test/NVIDIA_CUDA-8.0_Samples/bin/x86_64/linux/release/deviceQuery
...それも正しく、どちらか一方のGPUを見つけました。
qsubを使用してtest.shをキューに登録すると、他のジョブが実行されていないときにも、正しく動作します。ここでは出力があります。しかし
CUDA_VISIBLE_DEVICES: 0
~/test/NVIDIA_CUDA-8.0_Samples/bin/x86_64/linux/release/deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "GeForce GTX TITAN X" CUDA Driver Version/Runtime Version 8.0/8.0 CUDA Capability Major/Minor version number: 5.2 Total amount of global memory: 12204 MBytes (12796887040 bytes) (24) Multiprocessors, (128) CUDA Cores/MP: 3072 CUDA Cores GPU Max Clock rate: 1076 MHz (1.08 GHz) Memory Clock rate: 3505 Mhz Memory Bus Width: 384-bit L2 Cache Size: 3145728 bytes Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096) Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 2 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Disabled Device supports Unified Addressing (UVA): Yes Device PCI Domain ID/Bus ID/location ID: 0/3/0 Compute Mode:
< Exclusive Process (many threads in one process is able to use ::cudaSetDevice() with this device) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = GeForce GTX TITAN X Result = PASS
、(それは= 1 CUDA_VISIBLE_DEVICESを割り当てられている場合、すなわち)ジョブがすでにgpu0上で実行されている場合、ジョブはどんなのGPUを見つけることができません。出力:
CUDA_VISIBLE_DEVICES: 1
~/test/NVIDIA_CUDA-8.0_Samples/bin/x86_64/linux/release/deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
cudaGetDeviceCount returned 38
-> no CUDA-capable device is detected
Result = FAIL
何が起こっているのですか?
私は6.1-devで最近のGPU/CUDAの多くの修正を見ました。そのブランチに対して、それがどのように動作するかを調べる価値があるかもしれません。 – clusterdude
ありがとう@clusterdude。私は6.1-devを動作させることができませんでしたが、同じ問題が6.1.1にあります – Shaun