2017-08-26 9 views
1

このスレッドの拡張子:Create choropleth map from coordinate points。 (私は、できるだけ多くの人に関連するために2つのスレッドを結合したくありませんでした。)R - クロロプラス:ポリゴンに含まれるデータポイントのうち、特定の列の値が何パーセントですか?

私は、geocoordinates (yes-no)の値です。私は、各地域/多角形が関連付けられたブール値が真であるその中の点の割合によって陰影付けされている世界のchoroplethマップを生成したいと思います。

これは最小限再現可能な例ですが、今はポリゴンのポイント数に応じて色分けされています。データの「好き」の列は私のブール値です。

# Load package 
library(tidyverse) 
library(ggmap) 
library(maps) 
library(maptools) 
library(sf) 

data <- data.frame(class = c("Private", "Private", "Private", "Private", "Private", "Private", "Not Private", "Not Private", "Private", "Private", "Not Private", "Private", "Not Private", "Private", "Private", "Not Private", "Not Private", "Private", "Private", "Not Private"), 
        lat = c(33.663944, 41.117936, 28.049601, 39.994684, 36.786042, 12.797659, 52.923318, 33.385555, 9.295242, 32.678207, 41.833585, -28.762956, 39.284713, 36.060964, 36.052239, 36.841764, 33.714237, 33.552863, 32.678207, -38.132401), 
        lon = c(-83.98686, -77.60468, -81.97271, -82.98577, -119.78246, 121.82814, -1.16057, -86.76009, 123.27758, -83.17387, -87.73201, 32.05737, -76.62048, -115.13517, -79.39961, -76.35592, -85.85172, -112.12468, -83.17387, 144.36946)) 

# Convert to simple feature object 
point_sf <- st_as_sf(data, coords = c("lon", "lat"), crs = 4326) 

# Get world map data 
worldmap <- maps::map("world", fill = TRUE, plot = FALSE) 

# Convert world to sp class 
IDs <- sapply(strsplit(worldmap$names, ":"), "[", 1L) 
world_sp <- map2SpatialPolygons(worldmap, IDs = IDs, 
           proj4string = CRS("+proj=longlat +datum=WGS84")) 

# Convert world_sp to simple feature object 
world_sf <- st_as_sf(world_sp) 

# Add country ID 
world_sf <- world_sf %>% 
    mutate(region = map_chr(1:length([email protected]), function(i){ 
    [email protected][[i]]@ID 
    })) 

# Use st_within 
result <- st_within(point_sf, world_sf, sparse = FALSE) 

# Calculate the total count of each polygon 
# Store the result as a new column "Count" in world_sf 
world_sf <- world_sf %>% 
    mutate(Count = apply(result, 2, sum)) 

# Convert world_sf to a data frame world_df 
world_df <- world_sf 
st_geometry(world_df) <- NULL 

# Get world data frame 
world_data <- map_data("world") 

# Merge world_data and world_df 
world_data2 <- world_data %>% 
    left_join(world_df, by = c("region")) 

ggplot() + 
    geom_polygon(data = world_data2, aes(x = long, y = lat, group = group, fill = Count)) + 
    coord_fixed(1.3) 

これまでのところ、https://stackoverflow.com/users/7669809/ycwに感謝します。

+0

これらを指摘していただき、ありがとうございます。 「座標は経度/緯度ですが、平面であることが前提です」という警告は意味がなく、過去に見ることができます。 –

答えて

2

最初に多角形の点数を数え、とラベル付けされたレコードのデータセットをclass列にフィルタリングし、多角形の点数を再計算します。後で、Privateのカウント数をすべてのカウント数で除算し、100%を掛けてパーセントを計算することができます。

sfオブジェクトの素晴らしい点の1つは、データフレームでもあります。したがって、dplyrパッケージのfilterなどのデータフレームを管理する操作は、sfオブジェクトでも機能します。ですから、point_private_sf <- point_sf %>% filter(class %in% "Private")のようなコマンドを使って簡単にポイントをフィルタリングすることができます。

# Load package 
library(tidyverse) 
library(maps) 
library(maptools) 
library(sf) 

### Data Preparation 

data <- data.frame(class = c("Private", "Private", "Private", "Private", "Private", "Private", "Not Private", "Not Private", "Private", "Private", "Not Private", "Private", "Not Private", "Private", "Private", "Not Private", "Not Private", "Private", "Private", "Not Private"), 
        lat = c(33.663944, 41.117936, 28.049601, 39.994684, 36.786042, 12.797659, 52.923318, 33.385555, 9.295242, 32.678207, 41.833585, -28.762956, 39.284713, 36.060964, 36.052239, 36.841764, 33.714237, 33.552863, 32.678207, -38.132401), 
        lon = c(-83.98686, -77.60468, -81.97271, -82.98577, -119.78246, 121.82814, -1.16057, -86.76009, 123.27758, -83.17387, -87.73201, 32.05737, -76.62048, -115.13517, -79.39961, -76.35592, -85.85172, -112.12468, -83.17387, 144.36946)) 

# Convert to simple feature object 
point_sf <- st_as_sf(data, coords = c("lon", "lat"), crs = 4326) 

# Get world map data 
worldmap <- maps::map("world", fill = TRUE, plot = FALSE) 

# Convert world to sp class 
IDs <- sapply(strsplit(worldmap$names, ":"), "[", 1L) 
world_sp <- map2SpatialPolygons(worldmap, IDs = IDs, 
           proj4string = CRS("+proj=longlat +datum=WGS84")) 

# Convert world_sp to simple feature object 
world_sf <- st_as_sf(world_sp) 

# Add country ID 
world_sf <- world_sf %>% 
    mutate(region = map_chr(1:length([email protected]), function(i){ 
    [email protected][[i]]@ID 
    })) 

### Use st_within for the analysis 

# Use st_within for all points 
result_all <- st_within(point_sf, world_sf, sparse = FALSE) 

# Filter the points by "Private" in the class column 
point_private_sf <- point_sf %>% filter(class %in% "Private") 

# Use st_within for private points 
result_private <- st_within(point_private_sf, world_sf, sparse = FALSE) 

### Calculate the total count of each polygon 
# Store the result as ew columns "Count_all" and "Count_private" in world_sf 
world_sf <- world_sf %>% 
    mutate(Count_all = apply(result_all, 2, sum), 
     Count_private = apply(result_private, 2, sum)) %>% 
    # Calculate the percentage 
    mutate(Percent = ifelse(Count_all == 0, Count_all, Count_private/Count_all * 100)) 

### Plot the data 

# Convert world_sf to a data frame world_df 
world_df <- world_sf 
st_geometry(world_df) <- NULL 

# Get world data frame 
world_data <- map_data("world") 

# Merge world_data and world_df 
world_data2 <- world_data %>% 
    left_join(world_df, by = c("region")) 

ggplot() + 
    geom_polygon(data = world_data2, aes(x = long, y = lat, group = group, fill = Percent)) + 
    coord_fixed(1.3) 
関連する問題