2017-07-04 29 views

答えて

2

A TensorFlowバージョン:

import tensorflow as tf 

def CosineEmbeddingLoss(margin=0.): 
    def _cosine_similarity(x1, x2): 
    """Cosine similarity between two batches of vectors.""" 
    return tf.reduce_sum(x1 * x2, axis=-1)/(
     tf.norm(x1, axis=-1) * tf.norm(x2, axis=-1)) 
    def _cosine_embedding_loss_fn(input_one, input_two, target): 
    similarity = _cosine_similarity(input_one, input_two) 
    return tf.reduce_mean(tf.where(
     tf.equal(target, 1), 
     1. - similarity, 
     tf.maximum(tf.zeros_like(similarity), similarity - margin))) 
    return _cosine_embedding_loss_fn 

トーチのバージョンと一緒にそれを実行:

array([ 0.35702518], dtype=float32) 0.35702516587462357 

import tensorflow as tf 
import numpy 
import torch 
from torch.autograd import Variable 


first_values = numpy.random.normal(size=[100, 3]) 
second_values = numpy.random.normal(size=[100, 3]) 
labels = numpy.random.randint(2, size=[100]) * 2 - 1 
torch_result = torch.nn.CosineEmbeddingLoss(margin=0.5)(
    Variable(torch.FloatTensor(first_values)), 
    Variable(torch.FloatTensor(second_values)), 
    Variable(torch.IntTensor(labels))).data.numpy() 
with tf.Graph().as_default(): 
    with tf.Session(): 
    tf_result = CosineEmbeddingLoss(margin=0.5)(
     first_values, second_values, labels).eval() 
print(torch_result, tf_result) 

は、合理的な精度内に一致するようです

関連する問題