target_value title people start end twitter_map
0 AGE_13_TO_17 13 to 17 1 13 17 AGE_13_TO_17
1 AGE_13_TO_24 13 to 24 NaN 13 24 NaN
2 AGE_13_TO_34 13 to 34 NaN 13 34 NaN
3 AGE_13_TO_49 13 to 49 NaN 13 49 NaN
4 AGE_13_TO_54 13 to 54 NaN 13 54 NaN
5 AGE_OVER_13 Age Over 13 NaN 13 - NaN
6 AGE_18_TO_24 18 to 24 7 18 24 AGE_18_TO_24
7 AGE_18_TO_54 18 to 54 NaN 18 54 NaN
8 AGE_OVER_18 Age Over 18 NaN 18 - NaN
9 AGE_21_TO_34 21 to 34 NaN 21 34 NaN
10 AGE_21_TO_49 21 to 49 NaN 21 49 NaN
11 AGE_21_TO_54 21 to 54 NaN 21 54 NaN
12 AGE_25_TO_34 25 to 34 34 25 34 AGE_25_TO_34
13 AGE_25_TO_49 25 to 49 NaN 25 49 NaN
14 AGE_OVER_25 Age Over 25 NaN 25 - NaN
15 AGE_35_TO_44 35 to 44 15 35 44 AGE_35_TO_44
16 AGE_OVER_35 Age Over 35 NaN 35 - NaN
17 AGE_45_TO_54 45 to 54 1 45 54 AGE_45_TO_54
18 AGE_OVER_50 Age Over 50 NaN 50 - NaN
19 AGE_55_TO_64 55 to 64 3 55 64 AGE_55_TO_64
20 AGE_OVER_65 65+ 6 65 - AGE_OVER_65
21 None All Ages NaN All Ages - NaN
このように、このデータフレームには、年齢の開始時と年齢の終了時の値が表示されています。しかし、いくつかの重複するバケットがあります。私は正しく、私は簡単な例で動作します人列Pandas DataFrameで重複する年齢層の年齢の合計を取得する
最初の2行の予想出力
target_value title people start end twitter_map
0 AGE_13_TO_17 13 to 17 1 13 17 AGE_13_TO_17
1 AGE_13_TO_24 13 to 24 8 13 24 NaN
最初の3列には、最後の3つの列が予想出力が正確に何 –
に参加してきましたか? –
私は最初の2行にサンプルを与えました...私はそれが説明することを願って –