2017-03-04 37 views
0

私は深い学習のためのライブラリであるMXNetに取り組んでいます。実装されている構造は、単一マシンと分散CPUマシンの両方にあります。私はMXNet公式サイトのtutorialに続きました。 シングルマシンでの実装は何の問題もなく実行されており、結果が得られました。分散Mxnetトレーニングの許可が拒否されました

次に、複数のCPUマシンを使って分散型のトレーニングを試みました。 AWS、amazon仮想マシンでアカウントを作成し、t2.micro ubuntuの3つを起動しました。 は、私は次のコマンドラインを入力:

../../tools/launch.py -n 2 python train_mnist.py --kv-store dist_sync 

上記2人の労働者と1台のサーバとの分散バージョンの訓練を実行すると仮定し、このコマンドライン。

残念ながら、私はエラーが発生しました。私は拒否されたアクセス権があることを理解が、私は、次のコマンドにより、サーバから他の二つの労働者にアクセスしようとしましたが、それは動作します:

ssh -i key.pem [email protected] number. 

ここでは、エラーはあなたがあるため、エラーを見ている

Permission denied (publickey). 
Exception in thread Thread-3: 
Traceback (most recent call last): 
    File "/usr/lib/python2.7/threading.py", line 810, in __bootstrap_inner 
    self.run() 
    File "/usr/lib/python2.7/threading.py", line 763, in run 
    self.__target(*self.__args, **self.__kwargs) 
    File "/home/ubuntu/Research/code/mxnet/tools/../dmlc-core/tracker/dmlc_tracker/ssh.py", line 60, in run 
    subprocess.check_call(prog, shell = True) 
    File "/usr/lib/python2.7/subprocess.py", line 540, in check_call 
    raise CalledProcessError(retcode, cmd) 
CalledProcessError: Command 'ssh -o StrictHostKeyChecking=no ip -p 22 'export LD_LIBRARY_PATH=:/usr/local/cuda/lib64; export DMLC_SERVER_ID=0; export DMLC_WORKER_ID=0; export DMLC_PS_ROOT_URI=ip; export DMLC_ROLE=worker; export DMLC_PS_ROOT_PORT=9091; export DMLC_NUM_WORKER=1; export DMLC_NUM_SERVER=1; cd /home/ubuntu/Research/code/mxnet/example/image-classification/; python train_mnist.py --network lenet --kv-store dist_sync'' returned non-zero exit status 255 

Permission denied (publickey). 
Exception in thread Thread-2: 
Traceback (most recent call last): 
    File "/usr/lib/python2.7/threading.py", line 810, in __bootstrap_inner 
    self.run() 
    File "/usr/lib/python2.7/threading.py", line 763, in run 
    self.__target(*self.__args, **self.__kwargs) 
    File "/home/ubuntu/Research/code/mxnet/tools/../dmlc-core/tracker/dmlc_tracker/ssh.py", line 60, in run 
    subprocess.check_call(prog, shell = True) 
    File "/usr/lib/python2.7/subprocess.py", line 540, in check_call 
    raise CalledProcessError(retcode, cmd) 
CalledProcessError: Command 'ssh -o StrictHostKeyChecking=no ip -p 22 'export LD_LIBRARY_PATH=:/usr/local/cuda/lib64; export DMLC_SERVER_ID=0; export DMLC_PS_ROOT_URI=ip; export DMLC_ROLE=server; export DMLC_PS_ROOT_PORT=9091; export DMLC_NUM_WORKER=1; export DMLC_NUM_SERVER=1; cd /home/ubuntu/Research/code/mxnet/example/image-classification/; python train_mnist.py --network lenet --kv-store dist_sync'' returned non-zero exit status 255 

[03:48:39] /home/ubuntu/mxnet/dmlc-core/include/dmlc/./logging.h:300: [03:48:39] src/kvstore/kvstore.cc:37: compile with USE_DIST_KVSTORE=1 to use dist_sync 

Stack trace returned 10 entries: 
[bt] (0) /usr/local/lib/python2.7/dist-packages/mxnet-0.9.4-py2.7.egg/mxnet/libmxnet.so(_ZN4dmlc15LogMessageFatalD1Ev+0x3c) [0x7ff5b87a156c] 
[bt] (1) /usr/local/lib/python2.7/dist-packages/mxnet-0.9.4-py2.7.egg/mxnet/libmxnet.so(_ZN5mxnet7KVStore6CreateEPKc+0x5f4) [0x7ff5b91323d4] 
[bt] (2) /usr/local/lib/python2.7/dist-packages/mxnet-0.9.4-py2.7.egg/mxnet/libmxnet.so(MXKVStoreCreate+0xd) [0x7ff5b905b14d] 
[bt] (3) /usr/lib/x86_64-linux-gnu/libffi.so.6(ffi_call_unix64+0x4c) [0x7ff5bb86dadc] 
[bt] (4) /usr/lib/x86_64-linux-gnu/libffi.so.6(ffi_call+0x1fc) [0x7ff5bb86d40c] 
[bt] (5) /usr/lib/python2.7/lib-dynload/_ctypes.x86_64-linux-gnu.so(_ctypes_callproc+0x48e) [0x7ff5bba845fe] 
[bt] (6) /usr/lib/python2.7/lib-dynload/_ctypes.x86_64-linux-gnu.so(+0x15f9e) [0x7ff5bba85f9e] 
[bt] (7) python(PyEval_EvalFrameEx+0x98d) [0x5244dd] 
[bt] (8) python(PyEval_EvalCodeEx+0x2b1) [0x555551] 
[bt] (9) python(PyEval_EvalFrameEx+0x7e8) [0x524338] 

Traceback (most recent call last): 
    File "train_mnist.py", line 76, in <module> 
    fit.fit(args, sym, get_mnist_iter) 
    File "/home/ubuntu/Research/code/mxnet/example/image-classification/common/fit.py", line 97, in fit 
    kv = mx.kvstore.create(args.kv_store) 
    File "/usr/local/lib/python2.7/dist-packages/mxnet-0.9.4-py2.7.egg/mxnet/kvstore.py", line 403, in create 
    ctypes.byref(handle))) 
    File "/usr/local/lib/python2.7/dist-packages/mxnet-0.9.4-py2.7.egg/mxnet/base.py", line 77, in check_call 
    raise MXNetError(py_str(_LIB.MXGetLastError())) 
mxnet.base.MXNetError: [03:48:39] src/kvstore/kvstore.cc:37: compile with USE_DIST_KVSTORE=1 to use dist_sync 

Stack trace returned 10 entries: 
[bt] (0) /usr/local/lib/python2.7/dist-packages/mxnet-0.9.4-py2.7.egg/mxnet/libmxnet.so(_ZN4dmlc15LogMessageFatalD1Ev+0x3c) [0x7ff5b87a156c] 
[bt] (1) /usr/local/lib/python2.7/dist-packages/mxnet-0.9.4-py2.7.egg/mxnet/libmxnet.so(_ZN5mxnet7KVStore6CreateEPKc+0x5f4) [0x7ff5b91323d4] 
[bt] (2) /usr/local/lib/python2.7/dist-packages/mxnet-0.9.4-py2.7.egg/mxnet/libmxnet.so(MXKVStoreCreate+0xd) [0x7ff5b905b14d] 
[bt] (3) /usr/lib/x86_64-linux-gnu/libffi.so.6(ffi_call_unix64+0x4c) [0x7ff5bb86dadc] 
[bt] (4) /usr/lib/x86_64-linux-gnu/libffi.so.6(ffi_call+0x1fc) [0x7ff5bb86d40c] 
[bt] (5) /usr/lib/python2.7/lib-dynload/_ctypes.x86_64-linux-gnu.so(_ctypes_callproc+0x48e) [0x7ff5bba845fe] 
[bt] (6) /usr/lib/python2.7/lib-dynload/_ctypes.x86_64-linux-gnu.so(+0x15f9e) [0x7ff5bba85f9e] 
[bt] (7) python(PyEval_EvalFrameEx+0x98d) [0x5244dd] 
[bt] (8) python(PyEval_EvalCodeEx+0x2b1) [0x555551] 
[bt] (9) python(PyEval_EvalFrameEx+0x7e8) [0x524338] 

Exception in thread Thread-1: 
Traceback (most recent call last): 
    File "/usr/lib/python2.7/threading.py", line 810, in __bootstrap_inner 
    self.run() 
    File "/usr/lib/python2.7/threading.py", line 763, in run 
    self.__target(*self.__args, **self.__kwargs) 
    File "/home/ubuntu/Research/code/mxnet/tools/../dmlc-core/tracker/dmlc_tracker/tracker.py", line 363, in <lambda> 
    target=(lambda: subprocess.check_call(self.cmd, env=env, shell=True)), args=()) 
    File "/usr/lib/python2.7/subprocess.py", line 540, in check_call 
    raise CalledProcessError(retcode, cmd) 
CalledProcessError: Command 'python train_mnist.py --network lenet --kv-store dist_sync' returned non-zero exit status 1 

答えて

0

ですジョブを開始したノードは他のワーカーにアクセスできません。 launch.py​​はデフォルトでsshを使用してワーカーと通信します。ローカルマシンからノード(マスター)へのsshエージェント転送設定が必要です。これらの資格情報を使用して、クラスタ内の他のノードにsshと通信することができます。スタックを作成し、セットアップのssh-agentの転送とCIFAR-10例に〜ステップを示すDeep Learning CloudFormation templateを使用することを検討したいMAC OS、-A上

資格の転送が可能になるであろう

ssh -A -i key.pem [email protected] number. 

あなたは可能分散訓練を実行する。

関連する問題