重みの順序が重要であると仮定すると、これらはの組成です。それらがなければ、これらはパーティションです。いずれの場合も、Nの呼び出しとなる部品数によって制限されますが、次のコードではnumparts
が使用されます。 0の重みが許されるかどうかという問題もある。
重み付けを1にするには、1/pを整数にする必要があります。これは、次のコードではsumparts
です。それは重みの数に依存しない。コンポジションを作成したら、それをpに掛けることができます。つまり、体重を得るにはn
で割ることができます。このような組成物または制限された区画を生成するためには、partitions
パッケージがある。以下のコードは自明である必要があります。行列の各列は重みの集合です。私は7つの重みをとり、p = 0.1または10%を禁止し、0の重みを禁止しました。これは84の可能性を与えます。 0の重み付けは8008の可能性を意味する。 p = 0.01または1%の場合、重みが0でなくても1,120,529,256の可能性があり、それには1,705,904,746があります。注文が問題でない場合はcompositions
の代わりにrestrictedparts
を使用してください。
> library(partitions)
> numparts <- 7 # number of weights
> sumparts <- 10 # reciprocal of p
> weights <- compositions(n=sumparts, m=numparts, include.zero=FALSE)/sumparts
> weights
[1,] 0.4 0.3 0.2 0.1 0.3 0.2 0.1 0.2 0.1 0.1 0.3 0.2 0.1 0.2 0.1 0.1 0.2 0.1 0.1
[2,] 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.1 0.2 0.1 0.1 0.2 0.3 0.1 0.2 0.1 0.1 0.2 0.1
[3,] 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.4 0.1 0.1 0.1 0.2 0.2 0.3 0.1 0.1 0.2
[4,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3
[5,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
[6,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
[7,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
[1,] 0.1 0.3 0.2 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.3 0.2 0.1
[2,] 0.1 0.1 0.2 0.3 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.3
[3,] 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1
[4,] 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1
[5,] 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.1 0.1 0.1
[6,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2
[7,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
[1,] 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.3
[2,] 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1
[3,] 0.2 0.2 0.3 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1
[4,] 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1
[5,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.1 0.1 0.1 0.1 0.2 0.1 0.1
[6,] 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.1
[7,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2
[1,] 0.2 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1
[2,] 0.2 0.3 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1
[3,] 0.1 0.1 0.2 0.2 0.3 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.1
[4,] 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1
[5,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.1 0.1 0.1 0.1 0.2
[6,] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2
[7,] 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
[1,] 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1
[2,] 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1
[3,] 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1
[4,] 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1
[5,] 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1
[6,] 0.3 0.1 0.1 0.1 0.1 0.1 0.2 0.1
[7,] 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.4
小さなNとP?私は体重の順列によってあなたが意味することをかなり理解していません。重みに制約がなければ、これらは[0,1]の間の実際の値になる可能性があります。そのような値の集合は無計画です。または、「Pの倍数」は整数倍でなければならないことを意味しますか? – Iterator
アプリケーションを記述することも役立ちます。これは、何らかの制約のもとで整数格子上のすべての点を見つけるように思える。それが標準的なナップザックの問題に還元できるなら、幸運。 – Iterator
とにかくコードを投稿することをお勧めします。 –