私はgroup byとsum関数でpysparkコードを書いています。私はグループごとにパフォーマンスが影響を受けていると感じます。代わりにreducebykeyを使いたい。しかし、私はこの分野では新しいです。以下の私のシナリオ見つけてください、pysparkデータフレームでgroupbyをreducebykeyに変換するには?
ステップ1:ハイブテーブルを読み込むデータフレームにsqlcontextや店舗スルークエリデータを結合
ステップ2:入力列の合計数は、5で15は、キーフィールドであり、残りの数値ですされています。
上記の入力列に加えて、数値列からいくつかの列を派生させる必要があります。デフォルト値を持つ列はほとんどありません。
手順4:group byとsum関数を使用しました。 mapとreducebykeyオプションを使ってspark wayで同様のロジックを実行する方法。
from pyspark.sql.functions import col, when, lit, concat, round, sum
#sample data
df = sc.parallelize([(1, 2, 3, 4), (5, 6, 7, 8)]).toDF(["col1", "col2", "col3", "col4"])
#populate col5, col6, col7
col5 = when((col('col1') == 0) & (col('col3') != 0), round(col('col4')/ col('col3'), 2)).otherwise(0)
col6 = when((col('col1') == 0) & (col('col4') != 0), round((col('col3') * col('col4'))/ col('col1'), 2)).otherwise(0)
col7 = col('col2')
df1 = df.withColumn("col5", col5).\
withColumn("col6", col6).\
withColumn("col7", col7)
#populate col8, col9, col10
col8 = when((col('col1') != 0) & (col('col3') != 0), round(col('col4')/ col('col3'), 2)).otherwise(0)
col9 = when((col('col1') != 0) & (col('col4') != 0), round((col('col3') * col('col4'))/ col('col1'), 2)).otherwise(0)
col10= concat(col('col2'), lit("_NEW"))
df2 = df.withColumn("col5", col8).\
withColumn("col6", col9).\
withColumn("col7", col10)
#final dataframe
final_df = df1.union(df2)
final_df.show()
#groupBy calculation
#final_df.groupBy("col1", "col2", "col3", "col4").agg(sum("col5")).show()from pyspark.sql.functions import col, when, lit, concat, round, sum
#sample data
df = sc.parallelize([(1, 2, 3, 4), (5, 6, 7, 8)]).toDF(["col1", "col2", "col3", "col4"])
#populate col5, col6, col7
col5 = when((col('col1') == 0) & (col('col3') != 0), round(col('col4')/ col('col3'), 2)).otherwise(0)
col6 = when((col('col1') == 0) & (col('col4') != 0), round((col('col3') * col('col4'))/ col('col1'), 2)).otherwise(0)
col7 = col('col2')
df1 = df.withColumn("col5", col5).\
withColumn("col6", col6).\
withColumn("col7", col7)
#populate col8, col9, col10
col8 = when((col('col1') != 0) & (col('col3') != 0), round(col('col4')/ col('col3'), 2)).otherwise(0)
col9 = when((col('col1') != 0) & (col('col4') != 0), round((col('col3') * col('col4'))/ col('col1'), 2)).otherwise(0)
col10= concat(col('col2'), lit("_NEW"))
df2 = df.withColumn("col5", col8).\
withColumn("col6", col9).\
withColumn("col7", col10)
#final dataframe
final_df = df1.union(df2)
final_df.show()
#groupBy calculation
final_df.groupBy("col1", "col2", "col3", "col4").agg(sum("col5")........sum("coln")).show()
[DataFrame groupBy動作/最適化](https://stackoverflow.com/questions/32902982/dataframe-groupby-behaviour-optimization)の可能な複製 – user8371915