私が使用したデータセットには33kの画像が含まれています。トレーニングには27kが含まれ、検証セットには6k画像が含まれます。
私はモデルの次のCNNコードを使用する:データセットのオーバーフィットの可能性のある理由
model = Sequential()
model.add(Convolution2D(32, 3, 3, activation='relu', border_mode="same", input_shape=(row, col, ch)))
model.add(Convolution2D(32, 3, 3, activation='relu', border_mode="same"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(64, 3, 3, activation='relu', border_mode="same"))
model.add(Convolution2D(128, 3, 3, activation='relu', border_mode="same"))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Activation('relu'))
model.add(Dense(1024))
model.add(Dropout(0.5))
model.add(Activation('relu'))
model.add(Dense(1))
adam = Adam(lr=0.0001)
model.compile(optimizer=adam, loss="mse", metrics=["mae"])
Iが得出力overfitting
を示唆decreasing training loss
increasing validation loss
しかしを有しています。しかし、私は .Followingに役立ってきたはずであるdropouts
が含まれている出力のスナップ10のエポックのための訓練を受けたときである:
Epoch 1/10
27008/27040 [============================>.] - ETA: 5s - loss: 0.0629 - mean_absolute_error: 0.1428 Epoch 00000: val_loss improved from inf to 0.07595, saving model to dataset/-00-val_loss_with_mymodel-0.08.hdf5
27040/27040 [==============================] - 4666s - loss: 0.0629 - mean_absolute_error: 0.1428 - val_loss: 0.0759 - val_mean_absolute_error: 0.1925
Epoch 2/10
27008/27040 [============================>.] - ETA: 5s - loss: 0.0495 - mean_absolute_error: 0.1287 Epoch 00001: val_loss did not improve
27040/27040 [==============================] - 4605s - loss: 0.0494 - mean_absolute_error: 0.1287 - val_loss: 0.0946 - val_mean_absolute_error: 0.2289
Epoch 3/10
27008/27040 [============================>.] - ETA: 5s - loss: 0.0382 - mean_absolute_error: 0.1119 Epoch 00002: val_loss did not improve
27040/27040 [==============================] - 4610s - loss: 0.0382 - mean_absolute_error: 0.1119 - val_loss: 0.1081 - val_mean_absolute_error: 0.2463
So, what is wrong? Are there any other methods to prevent overfitting?
Does shuffling of data help?
「ドロップアウト」レートを上げてみることもできます。 'dropout'の後に' BatchNormalization'を追加します。 –
@MarcinMożejko、この[リンク](http://stackoverflow.com/questions/34716454/where-do-i-call-the-batchnormalization-function-in-keras)で提案されているように、Activationの前にBatchNormalizationを追加しました。増加したval_lossは挿入されていない前は0.06、挿入されていれば0.09のval_lossが得られます。 – SupposeXYZ