izomorphiusに基づいたPythonの実装です。上のヒントを参考にしてください。これは、増加するサブシーケンス問題のthis implementationをベースにしています。これは、izomorphiusが述べているように、「これまでに発見された最高のV」と「これまでに発見された最高の配列」を追跡しています。いったん識別されると、Vを拡張することは、減少するシーケンスを拡張することと変わらないことに留意されたい。また、以前に発見された増加するサブシーケンスから新しい候補Vを「スポーン」するルールがなければならない。
from bisect import bisect_left
def Vsequence(seq):
"""Returns the longest (non-contiguous) subsequence of seq that
first increases, then decreases (i.e. a "V sequence").
"""
# head[j] = index in 'seq' of the final member of the best increasing
# subsequence of length 'j + 1' yet found
head = [0]
# head_v[j] = index in 'seq' of the final member of the best
# V-subsequence yet found
head_v = []
# predecessor[j] = linked list of indices of best increasing subsequence
# ending at seq[j], in reverse order
predecessor = [-1] * len(seq)
# similarly, for the best V-subsequence
predecessor_v = [-1] * len(seq)
for i in xrange(1, len(seq)):
## First: extend existing V's via decreasing sequence algorithm.
## Note heads of candidate V's are stored in head_v and that
## seq[head_v[]] is a non-increasing sequence
j = -1 ## "length of best new V formed by modification, -1"
if len(head_v) > 0:
j = bisect_left([-seq[head_v[idx]] for idx in xrange(len(head_v))], -seq[i])
if j == len(head_v):
head_v.append(i)
if seq[i] > seq[head_v[j]]:
head_v[j] = i
## Second: detect "new V's" if the next point is lower than the head of the
## current best increasing sequence.
k = -1 ## "length of best new V formed by spawning, -1"
if len(head) > 1 and seq[i] < seq[head[-1]]:
k = len(head)
extend_with(head_v, i, k + 1)
for idx in range(k,-1,-1):
if seq[head_v[idx]] > seq[i]: break
head_v[idx] = i
## trace new predecessor path, if found
if k > j:
## It's better to build from an increasing sequence
predecessor_v[i] = head[-1]
trace_idx = predecessor_v[i]
while trace_idx > -1:
predecessor_v[trace_idx] = predecessor[trace_idx]
trace_idx=predecessor_v[trace_idx]
elif j > 0:
## It's better to extend an existing V
predecessor_v[i] = head_v[j - 1]
## Find j such that: seq[head[j - 1]] < seq[i] <= seq[head[j]]
## seq[head[j]] is increasing, so use binary search.
j = bisect_left([seq[head[idx]] for idx in xrange(len(head))], seq[i])
if j == len(head):
head.append(i) ## no way to turn any increasing seq into a V!
if seq[i] < seq[head[j]]:
head[j] = i
if j > 0: predecessor[i] = head[j - 1]
## trace subsequence back to output
result = []
trace_idx = head_v[-1]
while (trace_idx >= 0):
result.append(seq[trace_idx])
trace_idx = predecessor_v[trace_idx]
return result[::-1]
いくつかの出力例:右、
>>> l1
[26, 92, 36, 61, 91, 93, 98, 58, 75, 48, 8, 10, 58, 7, 95]
>>> Vsequence(l1)
[26, 36, 61, 91, 93, 98, 75, 48, 10, 7]
>>>
>>> l2
[20, 66, 53, 4, 52, 30, 21, 67, 16, 48, 99, 90, 30, 85, 34, 60, 15, 30, 61, 4]
>>> Vsequence(l2)
[4, 16, 48, 99, 90, 85, 60, 30, 4]
サブシーケンス内の数字、彼らは元のシーケンスであるのと同じ順序であるが、隣接する必要はありませんか? – gcbenison
はい、正確には元のシーケンスから要素を削除できますが、追加することはできず、削除の回数は最小限に抑える必要があります。 –
http://stackoverflow.com/questions/9764512/longest-subsequence-that-first-increases-then-decreases/9764580#9764580 –